A New Upper Bound on Extremal Number of Even Cycles

Type: Article

Publication Date: 2021-06-18

Citations: 5

DOI: https://doi.org/10.37236/9861

Abstract

In this paper, we prove $\mathrm{ex}(n, C_{2k})\le (16\sqrt{5}\sqrt{k\log k} + o(1))\cdot n^{1+1/k}$. This improves on a result of Bukh and Jiang from 2017, thereby reducing the best known upper bound by a factor of $\sqrt{5\log k}$.

Locations

  • The Electronic Journal of Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ New Upper Bound on Extremal Number of Even Cycles 2020 Zhiyang He
+ Upper bounds on the extremal number of the 4-cycle 2021 Jie Ma
Tianchi Yang
+ PDF Chat A note on the Turán function of even cycles 2012 Oleg Pikhurko
+ Exact results for generalized extremal problems forbidding an even cycle 2022 Ervin Győri
Zhen He
Zequn Lv
Nika Salia
Casey Tompkins
Kitti Varga
Xiutao Zhu
+ PDF Chat A Bound on the Number of Edges in Graphs Without an Even Cycle 2016 Boris Bukh
Zilin Jiang
+ The Rainbow Turán Number of Even Cycles 2021 Oliver Janzer
+ Rainbow Turán problem for even cycles 2013 Shagnik Das
Choongbum Lee
Benny Sudakov
+ The Ramsey number for a triple of long even cycles 2006 Agnieszka Figaj
Tomasz Łuczak
+ PDF Chat Erratum For ‘A Bound on the Number of Edges in Graphs Without an Even Cycle’ 2017 Boris Bukh
Zilin Jiang
+ Rainbow Turán number of even cycles, repeated patterns and blow-ups of cycles 2022 Oliver Janzer
+ Multi-color Ramsey numbers of even cycles 2008 Yusheng Li
Ko‐Wei Lih
+ The Extremal Function for Cycles of Length $\ell$ mod $k$ 2017 Benny Sudakov
Jacques Verstraëte
+ The extremal function for cycles of length $\ell$ mod $k$ 2016 Benny Sudakov
Jacques Verstraëte
+ The extremal function for cycles of length $\ell$ mod $k$ 2016 Benny Sudakov
Jacques Verstraëte
+ PDF Chat Effective Polynomial Upper Bounds to Perigees and Numbers of $(3x+d)-$Cycles of a Given Oddlength.. 2000 Edward G. Belaga
+ PDF Chat Extremal Numbers for Odd Cycles 2014 Zoltán Füredi
David S. Gunderson
+ PDF Chat On the Turán Numbers for Even Cycles 2014 Rui Zhang
Yongqi Sun
Yali Wu
+ PDF Chat Even cycles in graphs avoiding longer even cycles 2025 David Conlon
Eion Mulrenin
Cosmin Pohoata
+ PDF Chat A strengthening on consecutive odd cycles in graphs of given minimum degree 2024 Hao Lin
Guanghui Wang
Wenling Zhou
+ Some extremal results on 4-cycles 2021 Jialin He
Jie Ma
Tianchi Yang