Correlation Energy of a Weakly Interacting Fermi Gas with Large Interaction Potential

Type: Article

Publication Date: 2023-07-05

Citations: 8

DOI: https://doi.org/10.1007/s00205-023-01893-6

Abstract

Abstract Recently the leading order of the correlation energy of a Fermi gas in a coupled mean-field and semiclassical scaling regime has been derived, under the assumption of an interaction potential with a small norm and with compact support in Fourier space. We generalize this result to large interaction potentials, requiring only $$|\cdot | \hat{V} \in \ell ^1 (\mathbb {Z}^3)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mo>·</mml:mo><mml:mo>|</mml:mo></mml:mrow><mml:mover><mml:mi>V</mml:mi><mml:mo>^</mml:mo></mml:mover><mml:mo>∈</mml:mo><mml:msup><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> . Our proof is based on approximate, collective bosonization in three dimensions. Significant improvements compared to recent work include stronger bounds on non-bosonizable terms and more efficient control on the bosonization of the kinetic energy.

Locations

  • Archive for Rational Mechanics and Analysis - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Archivio Istituzionale della Ricerca (Universita Degli Studi Di Milano) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Correlation Energy of a Weakly Interacting Fermi Gas with Large Interaction Potential 2021 Niels Benedikter
Marcello Porta
Benjamin Schlein
Robert Seiringer
+ PDF Chat Correlation energy of a weakly interacting Fermi gas 2021 Niels Benedikter
Phan Thành Nam
Marcello Porta
Benjamin Schlein
Robert Seiringer
+ Correlation energy of weakly interacting Fermi gases 2023 Benjamin Schlein
+ On the correlation energy of the mean-field Fermi gas 2018 Christian Hainzl
Marcello Porta
Felix Rexze
+ On the correlation energy of interacting fermionic systems in the mean-field regime 2018 Christian Hainzl
Marcello Porta
Felix Rexze
+ On the correlation energy of interacting fermionic systems in the mean-field regime 2018 Christian Hainzl
Marcello Porta
Felix Rexze
+ PDF Chat Ground state energy of dense gases of strongly interacting fermions 2024 Søren Fournais
Błażej Ruba
Jan Philip Solovej
+ PDF Chat The Correlation Energy of the Electron Gas in the Mean-Field Regime 2024 Martin Ravn Christiansen
Christian Hainzl
Phan Thành Nam
+ An optimal upper bound for the dilute Fermi gas in three dimensions 2022 Emanuela L. Giacomelli
+ PDF Chat The Gell-Mann–Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime 2023 Martin Ravn Christiansen
Christian Hainzl
Phan Thành Nam
+ The Gell-Mann$-$Brueckner Formula for the Correlation Energy of the Electron Gas: A Rigorous Upper Bound in the Mean-Field Regime 2022 Martin Ravn Christiansen
Christian Hainzl
Phan Thành Nam
+ PDF Chat An optimal upper bound for the dilute Fermi gas in three dimensions 2023 Emanuela L. Giacomelli
+ Almost optimal upper bound for the ground state energy of a dilute Fermi gas via cluster expansion 2023 Asbjørn Bækgaard Lauritsen
+ Emergent Quasi-Bosonicity in Interacting Fermi Gases 2023 Martin Ravn Christiansen
+ Almost Optimal Upper Bound for the Ground State Energy of a Dilute Fermi Gas via Cluster Expansion 2024 Asbjørn Bækgaard Lauritsen
+ PDF Chat Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime 2019 Niels Benedikter
Phan Thành Nam
Marcello Porta
Benjamin Schlein
Robert Seiringer
+ PDF Chat On the Correlation Energy of Interacting Fermionic Systems in the Mean-Field Regime 2020 Christian Hainzl
Marcello Porta
Felix Rexze
+ PDF Chat Large momentum part of a strongly correlated Fermi gas 2008 Shina Tan
+ PDF Chat The Random Phase Approximation for Interacting Fermi Gases in the Mean-Field Regime 2023 Martin Ravn Christiansen
Christian Hainzl
Phan Thành Nam
+ The Random Phase Approximation for Interacting Fermi Gases in the Mean-Field Regime 2021 Martin Ravn Christiansen
Christian Hainzl
Phan Thành Nam