The real spectrum compactification of character varieties: characterizations and applications

Type: Article

Publication Date: 2021-06-17

Citations: 9

DOI: https://doi.org/10.5802/crmath.123

Abstract

We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.

Locations

  • Comptes Rendus Mathématique - View - PDF
  • arXiv (Cornell University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • Repository for Publications and Research Data (ETH Zurich) - View - PDF

Similar Works

Action Title Year Authors
+ The real spectrum compactification of character varieties: characterizations and applications 2020 Marc Burger
Alessandra Iozzi
Anne Parreau
Marie Beatrice Pozzetti
+ The real spectrum compactification of character varieties: characterizations and applications 2020 Marc Burger
Alessandra Iozzi
Anne Parreau
Marie Beatrice Pozzetti
+ The real spectrum compactification of character varieties 2023 Marc Burger
Alessandra Iozzi
Anne Parreau
Maria Beatrice Pozzetti
+ PDF Chat Compactification of varieties 1990 Niels Schwartz
+ PDF Chat The real spectrum and the oriented Gromov--Hausdorff compactifications of character varieties 2024 Victor Jaeck
+ A directional compactification of the complex Bloch variety 1990 Horst Knörrer
Eugene Trubowitz
+ A directional compactification of the complex bloch variety 1993 A Franz
+ PDF Chat The Length Spectrum of a Compact Constant Curvature Complex is Discrete 2006 Noel Brady
Jon McCammond
+ Compactification of Spaces of Representations After Culler, Morgan and Shalen 2014 Jean-Pierre Otal
+ Compactification of Strictly Convex Real Projective Structures 2005 Инканг Ким
+ PDF Chat Compactification d’espaces de représentations de groupes de type fini 2011 Anne Parreau
+ A compactification of the complement of a secant variety 1989 Aaron Bertram
+ Compactification of the moduli of abelian varieties 1996 Iku Nakamura
+ Cellulation of Compactified Hurwitz Spaces 2003 Michel Imbert
+ Des notions sur la géométrie hyperbolique complexe 2008 Tarik Jari
+ Intersection theory on Deligne-Mumford compactifications 1993 Eduard Looijenga
+ Complex analytic compactifications of ℂ3 1990 Mikio Furushima
+ PDF Chat The Geometry of the Compactification of the Hurwitz Scheme 1995 Shinichi Mochizuki
+ Hyperbolicité complexe et quotients de domaines symétriques bornés 2018 Benoît Cadorel
+ PDF Chat None 2023 Lucas Mason-Brown