Refined Weyl Law for Homogeneous Perturbations of the Harmonic Oscillator

Type: Article

Publication Date: 2018-02-08

Citations: 8

DOI: https://doi.org/10.1007/s00220-018-3100-5

Locations

  • Communications in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Weyl Type Theorem and Perturbations 2009 Sun Xiao
+ Weyl’s Theorem and Perturbations 2005 Mourad Oudghiri
+ Transformation Operators for Perturbed Harmonic Oscillators 2019 G. M. Masmaliev
A. Kh. Khanmamedov
+ Weyl Type Theorems Under Compact Perturbations 2017 Boting Jia
Youling Feng
+ Generalized a-Weyl’s theorem and perturbations 2010 Mohammed Berkani
Hassan Zariouh
+ The relationship between SVEP and Weyl type theorem under small perturbations 2016 Jiong Dong
Xiaohong Cao
Junhui Liu
+ Extended Feynman formula for harmonic oscillator 1979 P. A. Horv�thy
+ Generalized transformation brackets for the harmonic oscillator functions 1984 M. Sotona
M. Gmitro
+ Lorentz-covariant harmonic oscillators 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Lorentz-covariant Harmonic Oscillators 2018
+ A Rigidity Property of Perturbations of n Identical Harmonic Oscillators 2020 Massimo Villarini
+ Parasupersymmetry of Non-Linear and Isotropic Oscillator on Constant Curvature 2009 Hossein Rahbar
M. R. Pahlavani
J. Sadeghi
H. Moayyeri
+ On the Friedrichs model in the theory of perturbations of a continuous spectrum 1967 L. D. Faddeev
+ Harmonic oscillator perturbed by a decreasing scalar potential 2019 Iliasse Aarab
Mohamed Ali Tagmouti
+ Simplification for a perturbed quartic oscillator 1989 Alberto Abad Medina
María Luisa Séin-Echaluce
A. Elipe
André Deprit
+ First order perturbation theory for harmonic oscillators 1970 W. Flury
+ Deformed oscillator for the Morse potential 1993 Dennis Bonatsos
C. Daskaloyannis
+ Restriction theory and perturbations of Weyl sums 2015 Trevor D. Wooley
+ The Harmonic Oscillator's Frobenius Solution 2009 Carl W David
+ Theory of the perturbations of a continuous spectrum 1968 A. V. Potemkina