Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Intrinsic Dimension Estimation.
Adam Block
,
Zeyu Jia
,
Yury Polyanskiy
,
Alexander Rakhlin
Type:
Preprint
Publication Date:
2021-06-08
Citations:
2
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Intrinsic Dimension Estimation Using Wasserstein Distances
2021
Adam Block
Zeyu Jia
Yury Polyanskiy
Alexander Rakhlin
+
PDF
Chat
On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension
2024
Saptarshi Chakraborty
Peter L. Bartlett
+
Minimax rate of distribution estimation on unknown submanifolds under adversarial losses
2023
Rong Tang
Yun Yang
+
Minimax Rate of Distribution Estimation on Unknown Submanifold under Adversarial Losses
2022
Rong Tang
Yun Yang
+
PDF
Chat
Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks
2024
Yixuan Qiu
Qingyi Gao
Xiao Wang
+
PDF
Chat
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
2024
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
Gabriel Loaiza-Ganem
+
An error analysis of generative adversarial networks for learning distributions
2021
Jian Huang
Yuling Jiao
Zhen Li
Shiao Liu
Yang Wang
Yunfei Yang
+
Distribution Approximation and Statistical Estimation Guarantees of Generative Adversarial Networks
2020
Minshuo Chen
Wenjing Liao
Hongyuan Zha
Tuo Zhao
+
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
2022
Gabriel Loaiza-Ganem
Brendan Leigh Ross
Jesse C. Cresswell
Anthony L. Caterini
+
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
2022
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliński
+
The Intrinsic Dimension of Images and Its Impact on Learning
2021
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
+
Minimax Rates for Estimating the Dimension of a Manifold
2016
Jisu Kim
Alessandro Rinaldo
Larry Wasserman
+
Quality Evaluation of GANs Using Cross Local Intrinsic Dimensionality
2019
Sukarna Barua
Xingjun Ma
Sarah M. Erfani
Michael E. Houle
James Bailey
+
Quality Evaluation of GANs Using Cross Local Intrinsic Dimensionality
2019
Sukarna Barua
Xingjun Ma
Sarah M. Erfani
Michael E. Houle
James Bailey
+
MR-GAN: Manifold Regularized Generative Adversarial Networks
2018
Qunwei Li
Bhavya Kailkhura
Rushil Anirudh
Yi Zhou
Yingbin Liang
Pramod K. Varshney
+
An axiomatic approach to intrinsic dimension of a dataset
2007
Vladimir Pestov
+
On Deep Generative Models for Approximation and Estimation of Distributions on Manifolds
2023
Biraj Dahal
Alex Havrilla
Minshuo Chen
Tuo Zhao
Wenjing Liao
+
Robust Estimators in High Dimensions without the Computational Intractability
2016
Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+
Robust Estimators in High Dimensions without the Computational Intractability
2016
Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+
PDF
Chat
Robust Estimators in High Dimensions without the Computational Intractability
2016
Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
Works That Cite This (2)
Action
Title
Year
Authors
+
PDF
Chat
IAN: Iterated Adaptive Neighborhoods for Manifold Learning and Dimensionality Estimation
2023
Luciano Dyballa
Steven W. Zucker
+
PDF
Chat
Tangent Space and Dimension Estimation with the Wasserstein Distance
2024
Uzu Lim
Harald Oberhauser
Vidit Nanda
Works Cited by This (32)
Action
Title
Year
Authors
+
Plongements lipschitziens dans Rn
2003
Patrice Assouad
+
PDF
Chat
Local polynomial regression on unknown manifolds
2007
Peter J. Bickel
Bo Li
+
PDF
Chat
Generative Adversarial Networks
2022
Ian J. Goodfellow
Jean Pouget-Abadie
Mehdi Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
+
Optimal Rates for Regularized Least Squares Regression.
2009
Ingo Steinwart
Don Hush
Clint Scovel
+
PDF
Chat
On the empirical estimation of integral probability metrics
2012
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
Gert Lanckriet
+
PDF
Chat
A Topological View of Unsupervised Learning from Noisy Data
2011
Partha Niyogi
Stephen T. Smale
Shmuel Weinberger
+
An Algorithm for Finding Intrinsic Dimensionality of Data
1971
Keinosuke Fukunaga
D.R. Olsen
+
PDF
Chat
A characterization of dimension free concentration in terms of transportation inequalities
2009
Nathaël Gozlan
+
Measuring the strangeness of strange attractors
1983
Peter Grassberger
Itamar Procaccia
+
Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities
1999
Sergey G. Bobkov
Friedrich Götze