Harmonic Persistent Homology

Type: Article

Publication Date: 2024-03-26

Citations: 1

DOI: https://doi.org/10.1137/22m1518761

View Chat PDF

Abstract

.We introduce harmonic persistent homology spaces for filtrations of finite simplicial complexes. As a result, we can associate concrete subspaces of cycles to each bar of the barcode of the filtration. We prove stability of the harmonic persistent homology subspaces as well as the subspaces associated to the bars of the barcodes under small perturbations of functions defining them. We relate the notion of "essential simplices" introduced in an earlier work to identify simplices which play a significant role in the birth of a bar with that of harmonic persistent homology. We prove that the harmonic representatives of simple bars maximize the "relative essential content" among all representatives of the bar, where the relative essential content is the weight a particular cycle puts on the set of essential simplices.Keywordsharmonic homologypersistent homologybarcodesessential simplicesstabilityMSC codes55N31

Locations

  • SIAM Journal on Applied Algebra and Geometry - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Harmonic Persistent Homology 2021 Saugata Basu
Nathanael D. Cox
+ Harmonic Persistent Homology (extended abstract) 2022 Saugata Basu
Nathanael Cox
+ Structural features of persistent homology and their algorithmic transformations 2021 Andrei Pavlichenko
+ PDF Chat Rigidity of terminal simplices in persistent homology 2023 Aleksandra Franc
Ćœiga Virk
+ Rigidity of terminal simplices in persistent homology 2022 Aleksandra Franc
Ćœiga Virk
+ PDF Chat Tracking the Persistence of Harmonic Chains: Barcode and Stability 2024 Tianliang Hou
S. Parsa
Bei Wang
+ Persistent Homology and Harmonic Analysis 2024 Riccardo Gilblas
+ The Fiber of Persistent Homology for simplicial complexes 2021 Jacob Leygonie
Ulrike Tillmann
+ Persistent Homology and Applied Homotopy Theory 2020 Gunnar Carlsson
+ PDF Chat Persistent Homology: Theory and Practice 2013 Herbert Edelsbrunner
Dmitriy Morozov
+ PDF Chat Algebraic and Topological Persistence 2024 Luciano Melodia
+ PDF Chat Geometric Approaches to Persistent Homology 2022 Henry Adams
Baris Coskunuzer
+ PDF Chat An entropy-based persistence barcode 2014 Harish Chintakunta
Thanos Gentimis
Rocı́o GonzĂĄlez-Dı́az
María-José Jiménez
Hamid Krim
+ Persistent Homology: Theory and Practice 2013 Herbert Edelsbrunner
Dmitriy Morozov
+ On Association between Absolute and Relative Zigzag Persistence 2021 Tamal K. Dey
Tao Hou
+ PDF Chat Harmonic Chain Barcode and Stability 2024 S. Parsa
Bei Wang
+ Discrete Morse Theory for Computing Zigzag Persistence 2018 Clément Maria
Hannah Schreiber
+ The fiber of persistent homology for simplicial complexes 2022 Jacob Leygonie
Ulrike Tillmann
+ PDF Chat Discrete Morse Theory for Computing Zigzag Persistence 2019 Clément Maria
Hannah Schreiber
+ Algorithmic Reconstruction of the Fiber of Persistent Homology on Cell Complexes 2021 Jacob Leygonie
Gregory Henselman‐Petrusek

Citing (22)

Action Title Year Authors
+ PDF Chat Spectral sequences, exact couples and persistent homology of filtrations 2016 Saugata Basu
Laxmi Parida
+ Adaptive tracking of representative cycles in regular and zigzag persistent homology 2014 Jennifer Gamble
Harish Chintakunta
Hamid Krim
+ Principal submatrices IX: Interlacing inequalities for singular values of submatrices 1972 Robert C. Thompson
+ Differential Forms in Algebraic Topology 1982 Raoul Bott
Loring W. Tu
+ PDF Chat Stability of Persistence Diagrams 2006 David Cohen‐Steiner
Herbert Edelsbrunner
John Harer
+ PDF Chat Optimal homologous cycles, total unimodularity, and linear programming 2010 Tamal K. Dey
Anil N. Hirani
Bala Krishnamoorthy
+ Lipschitz Functions Have L p -Stable Persistence 2010 David Cohen‐Steiner
Herbert Edelsbrunner
John Harer
Yuriy Mileyko
+ PDF Chat Computing Persistent Homology 2004 Afra Zomorodian
Gunnar Carlsson
+ Computing Betti numbers via combinatorial Laplacians 1996 Joel Friedman
+ PDF Chat Volume-Optimal Cycle: Tightest Representative Cycle of a Generator in Persistent Homology 2018 Ippei Obayashi
+ PDF Chat Computing Persistent Homology with Various Coefficient Fields in a Single Pass 2014 Jean‐Daniel Boissonnat
Clément Maria
+ Hodge Laplacians on Graphs 2020 Lek‐Heng Lim
+ Efficient simplicial replacement of semi-algebraic sets and applications 2020 Saugata Basu
Negin Karisani
+ Persistent Laplacians: Properties, Algorithms and Implications 2022 Facundo MĂ©moli
Zhengchao Wan
Yusu Wang
+ PDF Chat Minimal Cycle Representatives in Persistent Homology Using Linear Programming: An Empirical Study With User’s Guide 2021 Lu Li
Connor J. Thompson
Gregory Henselman‐Petrusek
Chad Giusti
Lori Ziegelmeier
+ Persistent homology—a survey 2008 Herbert Edelsbrunner
John Harer
+ PDF Chat Schubert Varieties and Distances between Subspaces of Different Dimensions 2016 Ke Ye
Lek‐Heng Lim
+ PDF Chat TOPOLOGICAL FEATURES IN CANCER GENE EXPRESSION DATA 2014 Svetlana Lockwood
Bala Krishnamoorthy
+ PDF Chat Computing Minimal Persistent Cycles: Polynomial and Hard Cases 2019 Tamal K. Dey
Tao Hou
Sayan Mandal
+ PDF Chat Quantifying Genetic Innovation: Mathematical Foundations for the Topological Study of Reticulate Evolution 2020 Michael Lesnick
RaĂșl RabadĂĄn
Daniel I. S. Rosenbloom
+ Evolutionary de Rham-Hodge method 2020 Jiahui Chen
Rundong Zhao
Yiying Tong
Guo‐Wei Wei
+ PDF Chat A higher-dimensional homologically persistent skeleton 2018 Sara KaliĆĄnik
Vitaliy Kurlin
Davorin LeĆĄnik