Controllable Generation from Pre-trained Language Models via Inverse Prompting

Type: Preprint

Publication Date: 2021-08-12

Citations: 15

DOI: https://doi.org/10.1145/3447548.3467418

Download PDF

Abstract

Large-scale pre-trained language models have demonstrated strong capabilities of generating realistic text. However, it remains challenging to control the generation results. Previous approaches such as prompting are far from sufficient, which limits the usage of language models. To tackle this challenge, we propose an innovative method, inverse prompting, to better control text generation. The core idea of inverse prompting is to use generated text to inversely predict the prompt during beam search, which enhances the relevance between the prompt and the generated text and provides better controllability. Empirically, we pre-train a large-scale Chinese language model to perform a systematic study using human evaluation on the tasks of open-domain poem generation and open-domain long-form question answering. Our results show that our proposed method substantially outperforms the baselines and that our generation quality is close to human performance on some of the tasks. Narrators can try our poem generation demo at https://pretrain.aminer.cn/apps/poetry.html, while our QA demo can be found at https://pretrain.aminer.cn/app/qa. For researchers, the code is provided in https://github.com/THUDM/InversePrompting.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat BIPro: Zero-shot Chinese Poem Generation via Block Inverse Prompting Constrained Generation Framework 2024 Xu Zou
+ Deliberate then Generate: Enhanced Prompting Framework for Text Generation 2023 Bei Li
Rui Wang
Junliang Guo
Kaitao Song
Xu Tan
Hany Hassan
Arul Menezes
Tong Xiao
Jiang Bian
Jingbo Zhu
+ Learning to Transfer Prompts for Text Generation 2022 Junyi Li
Tianyi Tang
Jian‐Yun Nie
Ji-Rong Wen
Wayne Xin Zhao
+ ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation 2020 Dongling Xiao
Han Zhang
Yukun Li
Yu Sun
Hao Tian
Hua Wu
Haifeng Wang
+ ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation 2020 Dongling Xiao
Han Zhang
Yukun Li
Yu Sun
Hao Tian
Hua Wu
Haifeng Wang
+ Context-Tuning: Learning Contextualized Prompts for Natural Language Generation 2022 Tianyi Tang
Junyi Li
Wayne Xin Zhao
+ ProphetNet-X: Large-Scale Pre-training Models for English, Chinese, Multi-lingual, Dialog, and Code Generation 2021 Weizhen Qi
Yeyun Gong
Yu Yan
Can Xu
Bolun Yao
Bartuer Zhou
Biao Cheng
Daxin Jiang
Jiusheng Chen
Ruofei Zhang
+ Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models 2023 Lifu Tu
Semih Yavuz
Qu Jin
Jiacheng Xu
Rui Meng
Caiming Xiong
Yingbo Zhou
+ PDF Chat Discourse-Aware Prompt Design for Text Generation 2021 Marjan Ghazvininejad
Vladimir Karpukhin
Aslı Çelikyılmaz
+ Pre-Trained Language Models for Text Generation: A Survey 2024 Junyi Li
Tianyi Tang
Wayne Xin Zhao
Jian‐Yun Nie
Ji-Rong Wen
+ PDF Chat A Survey of Controllable Text Generation Using Transformer-based Pre-trained Language Models 2023 Hanqing Zhang
Haolin Song
Shaoyu Li
Ming Zhou
Dawei Song
+ A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models 2022 Hanqing Zhang
Haolin Song
Shaoyu Li
Ming Zhou
Dawei Song
+ Prefix-Tuning: Optimizing Continuous Prompts for Generation 2021 Xiang Lisa Li
Percy Liang
+ PDF Chat Controllable Text Generation for Large Language Models: A Survey 2024 Xun Liang
Hanyu Wang
Yezhaohui Wang
Shichao Song
Jiawei Yang
Simin Niu
Jie Hu
Dan Liu
Shunyu Yao
Feiyu Xiong
+ Natural Response Generation for Chinese Reading Comprehension 2023 Nuo Chen
Hongguang Li
Yinan Bao
Baoyuan Wang
Jia Li
+ Natural Response Generation for Chinese Reading Comprehension 2023 Nuo Chen
Hongguang Li
Yinan Bao
Baoyuan Wang
Jia Li
+ PDF Chat MVP: Multi-task Supervised Pre-training for Natural Language Generation 2023 Tianyi Tang
Junyi Li
Wayne Xin Zhao
Ji-Rong Wen
+ MVP: Multi-task Supervised Pre-training for Natural Language Generation 2022 Tianyi Tang
Junyi Li
Wayne Xin Zhao
Ji-Rong Wen
+ TextBox 2.0: A Text Generation Library with Pre-trained Language Models 2022 Tianyi Tang
Junyi Li
Zhipeng Chen
Yiwen Hu
Zhuohao Yu
Wenxun Dai
Zican Dong
Xiaoxue Cheng
Yuhao Wang
Wayne Xin Zhao
+ Survey of Hallucination in Natural Language Generation 2022 Ziwei Ji
Nayeon Lee
Rita Frieske
Tiezheng Yu
Dan Su
Yan Xu
Etsuko Ishii
Yejin Bang
Andrea Madotto
Pascale Fung

Works That Cite This (9)

Action Title Year Authors
+ PDF Chat RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning 2022 Mingkai Deng
Jianyu Wang
Cheng-Ping Hsieh
Yihan Wang
Han Guo
Tianmin Shu
Meng Song
Eric P. Xing
Zhiting Hu
+ RetrievalSum: A Retrieval Enhanced Framework for Abstractive Summarization 2021 Chenxin An
Ming Zhong
Zhichao Geng
Jianqiang Yang
Xipeng Qiu
+ GPT-Prompt Controlled Diffusion for Weakly-Supervised Semantic Segmentation 2023 Wangyu Wu
Tianhong Dai
Xiaowei Huang
Fei Ma
Jimin Xiao
+ CogView: Mastering Text-to-Image Generation via Transformers 2021 Ming Ding
Zhuoyi Yang
Wenyi Hong
Wendi Zheng
Chang Zhou
Da Yin
Junyang Lin
Xu Zou
Zhou Shao
Hongxia Yang
+ Pre-Trained Models: Past, Present and Future 2021 Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
Yuqi Huo
Jiezhong Qiu
Liang Zhang
Wentao Han
Minlie Huang
+ PDF Chat A Survey of Controllable Text Generation Using Transformer-based Pre-trained Language Models 2023 Hanqing Zhang
Haolin Song
Shaoyu Li
Ming Zhou
Dawei Song
+ Pre-trained models: Past, present and future 2021 Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
Yuqi Huo
Jiezhong Qiu
Yuan Yao
Ao Zhang
Liang Zhang
+ PDF Chat Learning to Transfer Prompts for Text Generation 2022 Junyi Li
Tianyi Tang
Jian‐Yun Nie
Ji-Rong Wen
Wayne Xin Zhao
+ PDF Chat ElitePLM: An Empirical Study on General Language Ability Evaluation of Pretrained Language Models 2022 Junyi Li
Tianyi Tang
Zheng Gong
Lixin Yang
Zhuohao Yu
Zhipeng Chen
Jingyuan Wang
Xin Zhao
Ji-Rong Wen

Works Cited by This (14)

Action Title Year Authors
+ SQuAD: 100,000+ Questions for Machine Comprehension of Text 2016 Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
+ CycleGAN, a Master of Steganography 2017 Casey Chu
Andrey Zhmoginov
M. Sandler
+ PDF Chat HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering 2018 Zhilin Yang
Peng Qi
Saizheng Zhang
Yoshua Bengio
William W. Cohen
Ruslan Salakhutdinov
Christopher D. Manning
+ Analysing Mathematical Reasoning Abilities of Neural Models 2019 David Saxton
Edward Grefenstette
Felix Hill
Pushmeet Kohli
+ Distributed Representations of Words and Phrases and their Compositionality 2013 Tomáš Mikolov
Ilya Sutskever
Kai Chen
Greg S. Corrado
Jay B. Dean
+ Dual Learning for Machine Translation 2016 Yingce Xia
Di He
Tao Qin
Liwei Wang
Nenghai Yu
Tie‐Yan Liu
Wei‐Ying Ma
+ RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019 Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Luke Zettlemoyer
Veselin Stoyanov
+ CTRL: A Conditional Transformer Language Model for Controllable Generation 2019 Nitish Shirish Keskar
Bryan McCann
Lav R. Varshney
Caiming Xiong
Richard Socher
+ Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism 2019 Mohammad Shoeybi
Mostofa Patwary
Raul Puri
Patrick LeGresley
Jared Casper
Bryan Catanzaro
+ Plug and Play Language Models: A Simple Approach to Controlled Text Generation 2019 Sumanth Dathathri
Andrea Madotto
Janice Lan
Jane Hung
Eric Frank
Piero Molino
Jason Yosinski
Rosanne Liu