Hodge-Deligne polynomials of character varieties of free abelian groups

Type: Article

Publication Date: 2021-01-01

Citations: 13

DOI: https://doi.org/10.1515/math-2021-0038

Abstract

Abstract Let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>F</m:mi> </m:math> F be a finite group and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>X</m:mi> </m:math> X be a complex quasi-projective <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>F</m:mi> </m:math> F -variety. For <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>r</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant="double-struck">N</m:mi> </m:math> r\in {\mathbb{N}} , we consider the mixed Hodge-Deligne polynomials of quotients <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> </m:msup> <m:mspace width="-0.15em" /> <m:mtext>/</m:mtext> <m:mspace width="-0.08em" /> <m:mi>F</m:mi> </m:math> {X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F , where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>F</m:mi> </m:math> F acts diagonally, and compute them for certain classes of varieties <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>X</m:mi> </m:math> X with simple mixed Hodge structures (MHSs). A particularly interesting case is when <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>X</m:mi> </m:math> X is the maximal torus of an affine reductive group <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>G</m:mi> </m:math> G , and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>F</m:mi> </m:math> F is its Weyl group. As an application, we obtain explicit formulas for the Hodge-Deligne and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>E</m:mi> </m:math> E -polynomials of (the distinguished component of) <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>G</m:mi> </m:math> G -character varieties of free abelian groups. In the cases <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mi>G</m:mi> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi mathvariant="double-struck">C</m:mi> <m:mspace width="-0.1em" /> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> G=GL\left(n,{\mathbb{C}}\hspace{-0.1em}) and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>S</m:mi> <m:mi>L</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi mathvariant="double-struck">C</m:mi> <m:mspace width="-0.1em" /> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> SL\left(n,{\mathbb{C}}\hspace{-0.1em}) , we get even more concrete expressions for these polynomials, using the combinatorics of partitions.

Locations

  • arXiv (Cornell University) - View - PDF
  • Repositório Científico do Instituto Politécnico de Lisboa (Instituto Politécnico de Lisboa) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Open Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Mixed Hodge structures on character varieties of nilpotent groups 2024 Carlos Florentino
Sean Lawton
Jaime Silva
+ Hodge polynomials of character varieties 2015 Javier Martínez Martínez
+ Hodge-Deligne polynomials of abelian character varieties 2017 Carlos Florentino
Jaime A. M. Silva
+ PDF Chat Mixed Hodge structures 1983 Fouad El Zein
+ PDF Chat Mixed Hodge polynomials of character varieties 2008 Tamás Hausel
Fernando Rodriguez-Villegas
+ Hodge-Deligne polynomials of character varieties of abelian groups 2017 Carlos Florentino
Jaime A. M. Silva
+ Mixed Hodge structures and representations of fundamental groups of algebraic varieties 2018 Louis-Clément Lefèvre
+ Mixed Hodge structures and representations of fundamental groups of algebraic varieties 2018 Louis-Clément Lefèvre
+ PDF Chat Hodge numbers of motives attached to Kloosterman and Airy moments 2024 Yichen Qin
+ Groups with two extreme character degrees and their normal subgroups 2001 Gustavo A. Fernández‐Alcober
Alexander Moretó
+ PDF Chat Explicit formulas for mixed Hodge polynomials of character varieties of free abelian groups 2024 R. Li
Rahul Kumar Singh
+ Mixed Hodge Structures on Alexander Modules 2020 Eva Elduque
Christian Geske
Moisés Herradón Cueto
Laurenţiu Maxim
Botong Wang
+ On Hodge polynomials of Singular Character Varieties 2020 Carlos Florentino
Azizeh Nozad
Jaime Silva
Alfonso Zamora
+ PDF Chat On Hodge Polynomials of Singular Character Varieties 2021 Carlos Florentino
Azizeh Nozad
Jaime Silva
Alfonso Zamora
+ PDF Chat Poincaré series of character varieties for nilpotent groups 2018 Mentor Stafa
+ PDF Chat Degrees of high-dimensional subvarieties of determinantal varieties 1998 B. Sethuraman
+ PDF Chat Mixed Hodge Structures on Alexander Modules 2024 Eva Elduque
Christian Geske
Moisés Herradón Cueto
Laurenţiu Maxim
Botong Wang
+ Hodge-Deligne Polynomials of Symmetric Products of Algebraic Groups 2018 Jaime A. M. Silva
+ On algebraic mixed Hodge substructures of H^2 1999 Luca Barbieri-Viale
Andreas Rosenschon
+ Mixed Hodge numbers and factorial ratios 2019 Fernando Rodríguez Villegas