Primitive roots for Pjateckii-Šapiro primes

Type: Article

Publication Date: 2021-05-21

Citations: 0

DOI: https://doi.org/10.5802/jtnb.1152

Abstract

For any non-integral positive real number c, any sequence (⌊n c ⌋) n is called a Pjateckii-Šapiro sequence. Given a real number c in the interval 1 , 12 11, it is known that the number of primes in this sequence up to x has an asymptotic formula. We would like to use the techniques of Gupta and Murty to study Artin's problems for such primes. We will prove that even though the set of Pjateckii-Šapiro primes is of density zero for a fixed c, one can show that there exist natural numbers which are primitive roots for infinitely many Pjateckii-Šapiro primes for any fixed c in the interval 1 , 77 7 - 1 4.

Locations

  • Journal de Théorie des Nombres de Bordeaux - View - PDF

Similar Works

Action Title Year Authors
+ ON PJATECKII-SAPIRO PRIME NUMBER THEOREM 1994 Jiachaohua
+ The Pjateckiĭ-S̆apiro prime number theorem 1983 D. R. Heath‐Brown
+ On Pjateckii-Sapiro Prime Number Theorem (II) 1993 Jia Chao
+ Sequence of Poulet Numbers Obtained by Formula mn-N+1 Where M of the Form 270k+13 2015 Marius Coman
+ A NOTE ON PRIMITIVE ROOTS 1986 Bingmao Deng
+ Two Prime Number Objects and The Velucchi Numbers 2023 César Aguilera
+ Piatetski-Shapiro sequences 2012 Roger C. Baker
William D. Banks
Jörg Brüdern
Igor E. Shparlinski
Andreas Weingartner
+ Problems on combinatorial properties of primes 2014 Zhi‐Wei Sun
+ Primes In Arithmetic Progressions And Primitive Roots 2017 N. A. Carella
+ Asymptotic For Primitive Roots Producing Polynomials 2016 N. A. Carella
+ Notes on primitive roots modulo primes 2014 Zhi‐Wei Sun
+ New observations on primitive roots modulo primes 2014 Zhi‐Wei Sun
+ Exponential sums, character sums, sieve methods and distribution of prime numbers 2017 Victor Zhenyu Guo
+ Santilli’s Prime Chains: Pj +1=aPj ± b 2017 Chun Xuan Jiang
+ Piatetski-Shapiro sequences 2012 Roger C. Baker
William D. Banks
Jörg Brüdern
Igor E. Shparlinski
Andreas Weingartner
+ A formula for generating primes and a possible infinite series of Poulet numbers 2013 Marius Coman
+ PDF Chat Piatetski-Shapiro sequences 2012 Roger C. Baker
William D. Banks
Jörg Brüdern
Igor E. Shparlinski
Andreas Weingartner
+ Prime numbers 1999 James J. Tattersall
+ Prime Numbers 1995 W. S. Anglin
J. Lambek
+ <i>k</i>th powers in Piatetski-Shapiro sequences 2022 Jinyun Qi
Victor Zhenyu Guo
Zhefeng Xu

Works That Cite This (0)

Action Title Year Authors