Pure tensor program rewriting via access patterns (representation pearl)

Type: Preprint

Publication Date: 2021-06-18

Citations: 16

DOI: https://doi.org/10.1145/3460945.3464953

Download PDF

Abstract

Tensor kernels in machine learning (ML) often correspond to pure mathematical expressions, making term rewriting an attractive strategy for optimization and mapping to specialized hardware accelerators. However, existing ML intermediate representations (IRs) tend to either be pure but high-level, making low-level rewrites to hardware targets inexpressible, or low-level but impure, hampering the use of term rewriting altogether.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Matching Linear Algebra and Tensor Code to Specialized Hardware Accelerators 2023 Pablo A. Lanzarote Martínez
Jackson Woodruff
Jordi Armengol-Estapé
Gregorio Bernabé
José M. Garcı́a
Michael O’Boyle
+ PDF Chat Optimizing Tensor Computation Graphs with Equality Saturation and Monte Carlo Tree Search 2024 Jakob Hartmann
Guoliang He
Eiko Yoneki
+ PDF Chat A Multi-Level Superoptimizer for Tensor Programs 2024 Mengdi Wu
Xinhao Cheng
Oded Padon
Zhihao Jia
+ OLLIE: Derivation-based Tensor Program Optimizer 2022 Zheng Liyan
Haojie Wang
Jidong Zhai
Muyan Hu
Zixuan Ma
Tuowei Wang
Shizhi Tang
Lei Xie
Kezhao Huang
Zhihao Jia
+ PDF Chat TF-Coder: Program Synthesis for Tensor Manipulations 2022 Kensen Shi
David Bieber
Rishabh Singh
+ TF-Coder: Program Synthesis for Tensor Manipulations 2020 Kensen Shi
David Bieber
Rishabh Singh
+ TF-Coder: Program Synthesis for Tensor Manipulations 2020 Kensen Shi
David Bieber
Rishabh Singh
+ Polyhedral Tensor Schedulers 2019 Benoît Meister
Eric Papenhausen Akai Kaeru
Benoit Pradelle Silexica
+ PDF Chat TapirXLA: Embedding Fork-Join Parallelism into the XLA Compiler in TensorFlow Using Tapir 2019 Tao B. Schardl
Siddharth Samsi
+ Generating Efficient Programs for Two-Level Memories from Tensor-products. 1995 Sandeep K. S. Gupta
Zhiyong Li
John H. Reif
+ PDF Chat Optimal Kernel Orchestration for Tensor Programs with Korch 2024 Muyan Hu
Ashwin Venkatram
S. Biswas
Balamurugan Marimuthu
Bohan Hou
G. Oliaro
Haojie Wang
Liyan Zheng
Xupeng Miao
Jidong Zhai
+ Predictive data locality optimization for higher-order tensor computations 2021 Tharindu R. Patabandi
Anand Venkat
Abhishek Kulkarni
Pushkar Ratnalikar
Mary Hall
Justin Gottschlich
+ PDF Chat Tensor Evolution: A framework for Fast Evaluation of Tensor Computations using Recurrences 2025 Javed Absar
Samarth Narang
Muthu Manikandan Baskaran
+ Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients 2020 William S. Moses
Valentin Churavy
+ Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients 2020 William S. Moses
Valentin Churavy
+ LoopStack: a Lightweight Tensor Algebra Compiler Stack 2022 Bram Wasti
José Cambronero
Benoit Steiner
Hugh Leather
Aleksandar Zlateski
+ Predictive Synthesis of API-Centric Code 2022 Daye Nam
Baishakhi Ray
Seohyun Kim
Xianshan Qu
Satish Chandra
+ PDF Chat Pruner: An Efficient Cross-Platform Tensor Compiler with Dual Awareness 2024 Liang Qiao
Jun Shi
Xiaoyu Hao
Xi Fang
Minfan Zhao
Ziqi Zhu
Junshi Chen
Hong An
Bing Li
Honghui Yuan
+ TPU-MLIR: A Compiler For TPU Using MLIR 2022 Pengchao Hu
Man Lu
Lei Wang
Guoyue Jiang
+ A Holistic Functionalization Approach to Optimizing Imperative Tensor Programs in Deep Learning 2024 Jinming Ma
Xiuhong Li
Zihan Wang
Xingcheng Zhang
Shengen Yan
Yuting Chen
Yueqian Zhang
Minxi Jin
Lijuan Jiang
Yun Liang

Works Cited by This (33)

Action Title Year Authors
+ PDF Chat The tensor algebra compiler 2017 Fredrik Kjølstad
Shoaib Kamil
Stephen Y. Chou
David Lugato
Saman Amarasinghe
+ In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
+ Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions 2018 Nicolas Vasilache
Oleksandr Zinenko
Theodoros Theodoridis
Priya Goyal
Zachary DeVito
William S. Moses
Sven Verdoolaege
Andrew Adams
Albert Cohen
+ Learning to Optimize Tensor Programs 2018 Tianqi Chen
Lianmin Zheng
Eddie Yan
Ziheng Jiang
Thierry Moreau
Luís Ceze
Carlos Guestrin
Arvind Krishnamurthy
+ Tiramisu: a polyhedral compiler for expressing fast and portable code 2019 Riyadh Baghdadi
Jessica Ray
Malek Ben Romdhane
Emanuele Del Sozzo
Abdurrahman Akkas
Yunming Zhang
Patricia Suriana
Shoaib Kamil
Saman Amarasinghe
+ Relay: A High-Level IR for Deep Learning. 2019 Jared Roesch
Steven Lyubomirsky
Marisa Kirisame
Josh Pollock
Logan Weber
Ziheng Jiang
Tianqi Chen
Thierry Moreau
Zachary Tatlock
+ PDF Chat Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code 2019 Riyadh Baghdadi
Jessica Ray
Malek Ben Romdhane
Emanuele Del Sozzo
Abdurrahman Akkas
Yunming Zhang
Patricia Suriana
Shoaib Kamil
Saman Amarasinghe
+ PDF Chat In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
+ TensorFlow: A system for large-scale machine learning 2016 Martı́n Abadi
Paul Barham
Jianmin Chen
Zhifeng Chen
Andy Davis
Jay B. Dean
Matthieu Devin
Sanjay Ghemawat
Geoffrey Irving
Michael Isard
+ PDF Chat A Hardware–Software Blueprint for Flexible Deep Learning Specialization 2019 Thierry Moreau
Tianqi Chen
Luis Vega
Jared Roesch
Eddie Yan
Lianmin Zheng
Josh Fromm
Ziheng Jiang
Luís Ceze
Carlos Guestrin