Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian

Type: Article

Publication Date: 2021-05-19

Citations: 1

DOI: https://doi.org/10.1090/bproc/62

Abstract

In this paper, we will prove a new, scale critical regularity criterion for solutions of the Navier–Stokes equation that are sufficiently close to being eigenfunctions of the Laplacian. This estimate improves previous regularity criteria requiring control on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper H With dot Superscript alpha"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\dot {H}^\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u comma"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u,</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 less-than-or-equal-to alpha greater-than five halves comma"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">2\leq \alpha &gt;\frac {5}{2},</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to a regularity criterion requiring control on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper H With dot Superscript alpha"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>α<!-- α --></mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\dot {H}^\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm multiplied by the deficit in the interpolation inequality for the embedding of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove upper H With dot Superscript alpha minus 2 Baseline intersection ModifyingAbove upper H With dot Superscript alpha Baseline right-arrow with hook ModifyingAbove upper H With dot Superscript alpha minus 1 Baseline period"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy="false">↪<!-- ↪ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\dot {H}^{\alpha -2}\cap \dot {H}^{\alpha } \hookrightarrow \dot {H}^{\alpha -1}.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> This regularity criterion suggests, at least heuristically, the possibility of some relationship between potential blowup solutions of the Navier–Stokes equation and the Kolmogorov-Obhukov spectrum in the theory of turbulence.

Locations

  • Proceedings of the American Mathematical Society Series B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global regularity for solutions of the Navier-Stokes equation sufficiently close to being eigenfunctions of the Laplacian 2020 Evan Miller
+ A note on weak solutions to the Navier–Stokes equations that are locally in 𝐿_{∞}(𝐿^{3,∞}) 2021 G. Serëgin
+ From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations 2022 Tobias Barker
Christophe Prange
+ PDF Chat Quantitative bounds for critically bounded solutions to the Navier-Stokes equations 2021 Terence Tao
+ Regularity criteria for 3D Navier–Stokes equations in terms of a mid frequency part of velocity in <i>B</i>˙<sup>-1</sup> <sub>∞,∞</sub> 2021 Myong‐Hwan Ri
+ On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ 2005 Yong Zhou
+ Regularity aspects of the Navier-Stokes equations in critical spaces 2020 Dallas Albritton
+ On regularity criteria for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mn>3</mml:mn></mml:math>D Navier–Stokes equations involving the ratio of the vorticity and the velocity 2016 Zujin Zhang
Yong Zhou
+ Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations 2011 Sadek Gala
+ PDF Chat Regularity of Solutions to the Navier–Stokes Equations in $$ {\dot{B}}_{\infty, \infty}^{-1} $$ 2020 G. Serëgin
Daoguo Zhou
+ Regularity criteria for 3D Navier–Stokes equations in terms of finite frequency parts of velocity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si10.svg"><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>∞</mml:mi><mml:mo>,</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup… 2019 Myong‐Hwan Ri
+ PDF Chat A locally anisotropic regularity criterion for the Navier–Stokes equation in terms of vorticity 2021 Evan Miller
+ Regularity Criteria for Navier-Stokes Solutions 2016 G. Serëgin
Vladimír Šverák
+ Regularity Criteria for Navier-Stokes Solutions 2018 G. Serëgin
Vladimír Šverák
+ Asymptotic Criticality of the Navier–Stokes Regularity Problem 2024 Zoran Grujić
Liaosha Xu
+ Topics in the regularity theory of the Navier-Stokes equations 2018 Tuan Pham
+ A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations 2019 Yanqing Wang
Gang Wu
Daoguo Zhou
+ Asymptotic Criticality of the Navier-Stokes Regularity Problem 2019 Zoran Grujić
Liaosha Xu
+ PDF Chat Large-scale regularity for the stationary Navier–Stokes equations over non-Lipschitz boundaries 2024 Mitsuo Higaki
Christophe Prange
Jinping Zhuge
+ PDF Chat Weak Solutions to the Navier-Stokes Equations with Bounded Scale-invariant Quantities 2011 G. Serëgin