Recovering Missing Data in Coherent Diffraction Imaging

Type: Article

Publication Date: 2021-01-01

Citations: 2

DOI: https://doi.org/10.1137/20m134767x

Abstract

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 23 June 2020Accepted: 08 February 2021Published online: 10 May 2021Keywordscoherent diffraction imaging, phase retrieval, hole in $k$-space, autocorrelation image, recovered magnitude data, noiseAMS Subject Headings15A29, 15A12, 94A12Publication DataISSN (online): 1936-4954Publisher: Society for Industrial and Applied MathematicsCODEN: sjisbi

Locations

  • SIAM Journal on Imaging Sciences - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Imaging in Random Media by Two-Point Coherent Interferometry 2021 Liliana Borcea
Josselin Garnier
+ A Flexible Phase Retrieval Framework for Flux-limited Coherent X-Ray Imaging 2016 Liang Shi
Thomas J. Lane
Gordon Wetzstein
+ PDF Chat Recovering Missing Data in Coherent Diffraction Imaging 2021 David A. Barmherzig
Alex H. Barnett
Charles L. Epstein
Leslie Greengard
Jeremy F. Magland
Manas Rachh
+ Geometry of the Phase Retrieval Problem 2022 Alexander H. Barnett
Charles L. Epstein
Leslie Greengard
Jeremy F. Magland
+ PDF Chat Patch-Based Holographic Image Sensing 2021 Alfred M. Bruckstein⋆
Martianus Frederic Ezerman
Adamas Aqsa Fahreza
San Ling
+ PDF Chat Super Resolution Phase Retrieval for Sparse Signals 2019 Gilles Baechler
Miranda Kreković
Juri Ranieri
Amina Chebira
Yue M. Lu
Martin Vetterli
+ Unfolding-Aided Bootstrapped Phase Retrieval in Optical Imaging 2022 Samuel Pinilla
Kumar Vijay Mishra
Igor Shevkunov
Mojtaba Soltanalian
Vladimir Katkovnik
Karen Egiazarian
+ Alternating Phase Langevin Sampling with Implicit Denoiser Priors for Phase Retrieval 2023 Rohun Agrawal
Oscar Leong
+ Alternating Phase Langevin Sampling with Implicit Denoiser Priors for Phase Retrieval 2022 Rohun Agrawal
Oscar Leong
+ On the use of deep learning for phase recovery 2023 Kaiqiang Wang
Li Song
Chutian Wang
Zhenbo Ren
Guangyuan Zhao
Jiazhen Dou
Jianglei Di
George Barbastathis
Renjie Zhou
Jianlin Zhao
+ PDF Chat Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities 2013 José A. Rodríguez
Rui Xu
Chien‐Chun Chen
Yunfei Zou
Jianwei Miao
+ PDF Chat Overlapping Domain Decomposition Methods for Ptychographic Imaging 2021 Huibin Chang
Roland Glowinski
Stefano Marchesini
Xue–Cheng Tai
Yang Wang
Tieyong Zeng
+ A general framework for denoising phaseless diffraction measurements 2016 Huibin Chang
Stefano Marchesini
+ Phase Retrieval with Application to Optical Imaging 2014 Yoav Shechtman
Yonina C. Eldar
Oren Cohen
Henry N. Chapman
Jianwei Miao
Mordechai Segev
+ Karhunen-LoĂšve Data Imputation in High Contrast Imaging 2023 Bin Ren
+ Phase Retrieval: From Computational Imaging to Machine Learning 2022 Jonathan Dong
Lorenzo Valzania
Antoine Maillard
Thanh-an Pham
Sylvain Gigan
Michaël Unser
+ Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns. 2018 Joshin P. Krishnan
JosĂ© M. Bioucas‐Dias
Vladimir Katkovnik
+ PDF Chat Large-scale phase retrieval 2021 Xuyang Chang
Liheng Bian
Jun Zhang
+ Large-scale phase retrieval 2021 Xuyang Chang
Liheng Bian
Jun Zhang
+ PDF Chat The numerics of phase retrieval 2020 Albert Fannjiang
Thomas Strohmer