Local well-posedness for the inhomogeneous nonlinear Schrödinger equation

Type: Article

Publication Date: 2021-01-01

Citations: 22

DOI: https://doi.org/10.3934/dcds.2021082

Abstract

<p style='text-indent:20px;'>We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation <inline-formula><tex-math id="M1">\begin{document}$ i\partial_t u +\Delta u = \mu |x|^{-b}|u|^\alpha u,\; u(0)\in H^s({\mathbb R}^N),\; N\geq 1,\; \mu\in {\mathbb C},\; \; b>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \alpha>0. $\end{document}</tex-math></inline-formula> Only partial results are known for the local existence in the subcritical case <inline-formula><tex-math id="M3">\begin{document}$ \alpha<(4-2b)/(N-2s) $\end{document}</tex-math></inline-formula> and much more less in the critical case <inline-formula><tex-math id="M4">\begin{document}$ \alpha = (4-2b)/(N-2s). $\end{document}</tex-math></inline-formula> In this paper, we develop a local well-posedness theory for the both cases. In particular, we establish new results for the continuous dependence and for the unconditional uniqueness. Our approach provides simple proofs and allows us to obtain lower bounds of the blowup rate and of the life span. The Lorentz spaces and the Strichartz estimates play important roles in our argument. In particular this enables us to reach the critical case and to unify results for <inline-formula><tex-math id="M5">\begin{document}$ b = 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b>0. $\end{document}</tex-math></inline-formula></p>

Locations

  • Discrete and Continuous Dynamical Systems - View

Similar Works

Action Title Year Authors
+ PDF Chat Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation 2021 Chao Yang
+ Local and global well-posedness in $L^{2}(\mathbb R^{n})$ for the inhomogeneous nonlinear Schrödinger equation 2021 JinMyong An
JinMyong Kim
+ PDF Chat Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation 2015 Luiz Gustavo Farah
+ Global well-posedness and blow-up on the energy space for the Inhomogeneous Nonlinear Schrödinger Equation 2016 Luiz Gustavo Farah
+ Global well-posedness and blow-up on the energy space for the Inhomogeneous Nonlinear Schr\"odinger Equation 2016 Luiz Gustavo Farah
+ PDF Chat Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation 2019 Congming Peng
Dun Zhao
+ Local well-posedness for the inhomogeneous nonlinear Schrödinger equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si18.svg"><mml:mrow><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> 2020 JinMyong An
JinMyong Kim
+ PDF Chat Local and global existence in L^{p} for the inhomogeneous nonlinear Schrödinger equation 2021 Wang Deng
Han Yang
+ PDF Chat Small Data Global Well-Posedness and Scattering for the Inhomogeneous Nonlinear Schrödinger Equation in $H^s(\mathbb{R}^n)$ 2021 JinMyong An
JinMyong Kim
+ PDF Chat Local well-posedness for the nonlocal nonlinear Schrödinger equation below the energy space 2010 Didier Pilod
Roger Peres de Moura
+ On the inhomogeneous biharmonic nonlinear Schrödinger equation: local, global and stability results 2019 Carlos M. Guzmán
Ademir Pastor
+ Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation 2021 Lassaad Aloui
Slim Tayachi
+ On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case 2019 Jungkwon Kim
Yoonjung Lee
Ihyeok Seo
+ Small data global well--posedness and scattering for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$ 2021 JinMyong An
JinMyong Kim
+ On global well-posedness, scattering and other properties for infinity energy solutions to inhomogeneous NLS Equation 2023 Mykael Cardoso
Roger de Moura
Gleison N. Santos
+ On the inhomogeneous biharmonic nonlinear Schr\"odinger equation: local, global and stability results 2019 Carlos M. Guzmán
Ademir Pastor
+ On well posedness for the inhomogeneous nonlinear Schr\"odinger equation 2016 Carlos M. Guzmán
+ Asymptotic behavior for inhomogeneous nonlinear Schrödinger Equation 2020 Mykael Cardoso
+ PDF Chat On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case 2021 Jungkwon Kim
Yoonjung Lee
Ihyeok Seo
+ Sobolev-Lorentz spaces with an application to the inhomogeneous biharmonic NLS equation 2022 JinMyong An
PyongJo Ryu
JinMyong Kim