Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Mathematical model of COVID-19 pandemic based on a retarded differential equation
Vladimir L. Derbov
,
S. I. Vinitsky
,
А. А. Гусев
,
Feodor M. Pen'kov
,
P. M. Krassovitskiy
,
Galmandakh Chuluunbaatar
Type:
Article
Publication Date:
2021-05-04
Citations:
3
DOI:
https://doi.org/10.1117/12.2589136
Share
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Reduced SIR Model of COVID-19 Pandemic
2021
S. I. Vinitsky
А. А. Гусев
Vladimir L. Derbov
P. M. Krassovitskiy
Ф. М. Пеньков
Galmandakh Chuluunbaatar
+
PDF
Chat
Approximate Solutions of the RSIR Model of COVID-19 Pandemic
2021
Ф. М. Пеньков
Vladimir L. Derbov
Galmandakh Chuluunbaatar
А. А. Гусев
S. I. Vinitsky
Marek Góźdź
P. M. Krassovitskiy
+
RETRACTED ARTICLE: Mathematical analysis of COVID-19 pandemic by using the concept of SIR model
2021
Harish Garg
Abdul Nasir
Naeem Jan
Sami Ullah Khan
+
PDF
Chat
Mathematical Analysis of SIR Model for COVID-19 Transmission
2022
Haradhan Mohajan
+
The Model of COVID-19 Pandemic
2020
Tianyu Xin
+
PDF
Chat
Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management
2023
Charu Arora
Poras Khetarpal
Saket Gupta
Nuzhat Fatema
Hasmat Malik
Asyraf Afthanorhan
+
PDF
Chat
A rigorous theoretical and numerical analysis of a nonlinear reaction-diffusion epidemic model pertaining dynamics of COVID-19
2024
Laiquan Wang
Arshad Alam Khan
Saif Ullah
Nadeem Haider
Salman A. AlQahtani
Abdul Baseer Saqib
+
PDF
Chat
Mathematical Modeling of COVID-19 Dynamics under Two Vaccination Doses and Delay Effects
2023
Gabriel Sepulveda
Abraham J. Arenas
Gilberto González‐Parra
+
PDF
Chat
A Review of Mathematical Models of COVID-19 Transmission
2023
Huan Yang
Xiaolin Lin
Jianquan Li
Yijiang Zhai
Jing Wu
+
PDF
Chat
Mathematical Analysis of SEIR Model to Prevent COVID-19 Pandemic
2022
Devajit MOHAJAN
Haradhan Mohajan
+
An evaluation of mathematical models for the outbreak of COVID-19
2020
Ning Wang
Yuting Fu
Hu Zhang
Huipeng Shi
+
PDF
Chat
Computational Modeling of Reaction-Diffusion COVID-19 Model Having Isolated Compartment
2022
Muhammad Shoaib Arif
Kamaleldin Abodayeh
Asad Ejaz
+
PDF
Chat
Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation
2023
Brice Kammegne Tcheugam
Kayode Oshinubi
Oluwatosin Babasola
Olumuyiwa James Peter
Olumide Babatope Longe
R. B. Ogunrinde
E. O. Titiloye
Roseline Toyin Abah
Jacques Demongeot
+
PDF
Chat
Modeling and analysis of the spread of the COVID-19 pandemic using the classical SIR model
2021
Zahra Zare
Nastarn Vasegh
+
PDF
Chat
Numerical simulation and stability analysis of a novel reaction–diffusion COVID-19 model
2021
Nauman Ahmed
Amr Elsonbaty
Ali Raza
Muhammad Rafiq
Waleed Adel
+
Modeling of COVID-19 propagation with compartment models
2021
Günter Bärwolff
+
Qualitative Analysis of a COVID-19 Mathematical Model with a Discrete Time Delay
2024
Abraham J. Arenas
Gilberto González‐Parra
Miguel Saenz Saenz
+
Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate
2022
Oluwatosin Babasola
Oshinubi Kayode
Olumuyiwa James Peter
Faithful Chiagoziem Onwuegbuche
Festus Abiodun Oguntolu
+
An Advanced Susceptible-Exposed-Infectious-Recovered model for quantitative analysis of COVID-19
2021
Rahul Dixit
Dev Sourav Panda
Shradha Suman Panda
+
PDF
Chat
A New Epidemic Model for the COVID-19 Pandemic: The θ-SI(R)D Model
2022
Ettore Rocchi
Sara Peluso
Davide Sisti
Margherita Carletti
Cited by (3)
Action
Title
Year
Authors
+
Modeling the multifractal dynamics of COVID-19 pandemic
2022
Vladimir L. Derbov
А. А. Гусев
S. I. Vinitsky
S. A. Mikheev
И. В. Цветков
В. П. Цветков
+
Modeling the multifractal dynamics of COVID-19 pandemic
2022
В. П. Цветков
S. A. Mikheev
И. В. Цветков
Vladimir L. Derbov
А. А. Гусев
S. I. Vinitsky
+
PDF
Chat
Approximate Solutions of the RSIR Model of COVID-19 Pandemic
2021
Ф. М. Пеньков
Vladimir L. Derbov
Galmandakh Chuluunbaatar
А. А. Гусев
S. I. Vinitsky
Marek Góźdź
P. M. Krassovitskiy
Citing (7)
Action
Title
Year
Authors
+
PDF
Chat
An application of the theory of probabilities to the study of a priori pathometry.—Part I
1916
Ronald Ross
+
Retarded differential equations
2000
Christopher Baker
+
Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a Gauss error function and Monte Carlo simulations
2020
Ignazio Ciufolini
Antonio Paolozzi
+
Modeling projections for COVID-19 pandemic by combining epidemiological, statistical, and neural network approaches
2020
Steffen Uhlig
Kapil Nichani
Carsten Uhlig
Kirsten Simon
+
A novel deterministic forecast model for COVID-19 epidemic based on a single ordinary integro-differential equation
2020
Felix Rieper
Claudius H. F. Röhl
Enrico De Micheli
+
PDF
Chat
A novel deterministic forecast model for the Covid-19 epidemic based on a single ordinary integro-differential equation
2020
Felix Rieper
Claudius H. F. Röhl
Enrico De Micheli
+
PDF
Chat
Solvable delay model for epidemic spreading: the case of Covid-19 in Italy
2020
Luca Dell’Anna