An Intrinsic Harnack inequality for some non-homonegeneous parabolic equations in non-divergence form

Type: Preprint

Publication Date: 2021-05-17

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ An Intrinsic Harnack inequality for some non-homogeneous parabolic equations in non-divergence form 2021 Vedansh Arya
+ Harnack and pointwise estimates for degenerate or singular parabolic equations 2019 F. G. Düzgün
S. Mosconi
V. Vespri
+ PDF Chat Harnack and Pointwise Estimates for Degenerate or Singular Parabolic Equations 2019 Fatma Gamze Düzgün
Sunra Mosconi
Vincenzo Vesprı
+ PDF Chat An Intrinsic Harnack inequality for some non-homogeneous parabolic equations in non-divergence form 2022 Vedansh Arya
+ Intrinsic Harnack inequalities for parabolic equations with variable exponents 2013 Yongzhong Wang
+ On the Harnack inequality for non-divergence parabolic equations 2020 Ugo Gianazza
Sandro Salsa
+ The parabolic Harnack inequality for nonlocal equations 2024 Moritz Kaßmann
Marvin Weidner
+ PDF Chat H\"older Continuity and Harnack estimate for non-homogeneous parabolic equations 2024 Vedansh Arya
Vesa Julin
+ Intrinsic Harnack's inequality for a general nonlinear parabolic equation in non-divergence form 2023 Tapio Kurkinen
Jarkko Siltakoski
+ Hölder continuity and Harnack estimate for non-homogeneous parabolic equations 2024 Vedansh Arya
Vesa Julin
+ PDF Chat A Harnack inequality for nonlinear equations 1963 James Serrin
+ PDF Chat On a Harnack inequality for nonlinear parabolic equations 1967 Mitunobu Kurihara
+ PDF Chat Harnack type inequality for a nonlinear elliptic equation. 2017 Samy Skander Bahoura
+ Harnack Inequality and Fundamental Solution for Degenerate Hypoelliptic Operators 2017 Erika Battaglia
+ The Harnack inequality in ℝ2 for quasilinear elliptic equations 2001 Patrizia Pucci
James Serrin
+ PDF Chat Intrinsic Harnack’s Inequality for a General Nonlinear Parabolic Equation in Non-divergence Form 2024 Tapio Kurkinen
Jarkko Siltakoski
+ A Harnack inequality for a degenerate parabolic equation 2006 Ugo Gianazza
Vincenzo Vespri
+ Harnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coeffcients from Kato-type classes 2009 Vitali Liskevich
Igor I. Skrypnik
+ PDF Chat Harnack estimates for quasi-linear degenerate parabolic differential equations 2008 Emmanuele DiBenedetto
Ugo Gianazza
Vincenzo Vespri
+ Harnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes 2009 Vitali Liskevich
Igor I. Skrypnik

Works That Cite This (0)

Action Title Year Authors