Global Well-Posedness for $$H^{-1}(\mathbb {R})$$ Perturbations of KdV with Exotic Spatial Asymptotics

Type: Article

Publication Date: 2022-11-19

Citations: 4

DOI: https://doi.org/10.1007/s00220-022-04522-7

Abstract

Abstract Given a suitable solution V ( t , x ) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data $$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . Our conditions on V do include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles $$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>5</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>/</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022. https://doi.org/10.1088/1361-6544/ac37f5 ) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019. https://doi.org/10.4007/annals.2019.190.1.4 ) where $$V\equiv 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>≡</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . In that setting, it is known that $$H^{-1}(\mathbb {R})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is sharp in the class of $$H^s(\mathbb {R})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> spaces.

Locations

  • Communications in Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Global well-posedness for $H^{-1}(\mathbb{R})$ perturbations of KdV with exotic spatial asymptotics 2021 Thierry Laurens
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vișan
+ Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat Global well-posedness of Korteweg–de Vries equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2009 Zihua Guo
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
+ PDF Chat KdV on an incoming tide 2021 Thierry Laurens
+ KdV on an incoming tide 2021 Thierry Laurens
+ Global well-posedness for KdV in Sobolev Spaces of negative index 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence C. Tao
+ Large data local well-posedness for a class of KdV-type equations 2014 Benjamin Harrop‐Griffiths
+ Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation 2008 Zihua Guo
Baoxiang Wang
+ PDF Chat On the well-posedness of the generalized Korteweg–de Vries equation in scale-critical Lr-space 2016 Satoshi Masaki
Jun-ichi Segata
+ Local well posedness for the KdV equation with data in a subspace of $H^{-1}$ 2009 Baoxiang Wang
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 展 岸本
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 Nobu Kishimoto
+ PDF Chat On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ Global Solutions for the KdV Equation with Unbounded Data 1997 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vişan
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ KdV is well-posed in $H^{-1}$ 2019 Rowan Killip
Monica Vişan
+ A priori bounds for KdV equation below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mfrac><mml:mn>3</mml:mn><mml:mn>4</mml:mn></mml:mfrac></mml:mrow></mml:msup></mml:math> 2014 Baoping Liu