KdV on an incoming tide

Type: Preprint

Publication Date: 2021-04-22

Citations: 2

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat KdV on an incoming tide 2021 Thierry Laurens
+ PDF Chat Global Well-Posedness for $$H^{-1}(\mathbb {R})$$ Perturbations of KdV with Exotic Spatial Asymptotics 2022 Thierry Laurens
+ Global well-posedness for $H^{-1}(\mathbb{R})$ perturbations of KdV with exotic spatial asymptotics 2021 Thierry Laurens
+ Fast rotation and inviscid limits for the SQG equation with general ill-prepared initial data 2022 Leonardo Kosloff
Gabriele Sbaiz
+ KdV is well-posed in $H^{-1}$ 2019 Rowan Killip
Monica Vişan
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vişan
+ KdV is wellposed in $H^{-1}$ 2018 Rowan Killip
Monica Vișan
+ On a KdV Type Equation of Viscous Long Range Water Waves 2009 S. G. Sajjadi
Timothy A. Smith
Joern Mumme
+ PDF Chat Improved lower bound for the radius of analyticity for the modified KdV equation 2024 Renata O. Figueira
Mahendra Panthee
+ PDF Chat Singularity Formation and Global Existence of Classical Solutions for One-Dimensional Rotating Shallow Water System 2018 Bin Cheng
Peng Qu
Chunjing Xie
+ Global Well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\R)$ 2008 Zihua Guo
+ Well-posedness for a perturbation of the KdV equation 2019 Xavier Carvajal
Liliana Esquivel
+ PDF Chat On the well-posedness of the generalized Korteweg–de Vries equation in scale-critical Lr-space 2016 Satoshi Masaki
Jun-ichi Segata
+ A-priori bounds for KdV equation below $H^{-3/4}$ 2011 Baoping Liu
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat On the Long-Time Asymptotic Behavior of the Modified Korteweg--de Vries Equation with Step-like Initial Data 2020 Тамара Грава
Alexander Minakov
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ Large data local well-posedness for a class of KdV-type equations 2014 Benjamin Harrop‐Griffiths
+ On propagation of regularities and evolution of radius of analyticity in the solution of the fifth order KdV-BBM model 2020 Xavier Carvajal
Mahendra Panthee
+ Well-posedness for the fifth-order KdV equation in the energy space 2014 Carlos E. Kenig
Didier Pilod