Hamilton transversals in random Latin squares

Type: Article

Publication Date: 2022-06-14

Citations: 1

DOI: https://doi.org/10.1002/rsa.21102

Abstract

Abstract Gyárfás and Sárközy conjectured that every Latin square has a “cycle‐free” partial transversal of size . We confirm this conjecture in a strong sense for almost all Latin squares, by showing that as , all but a vanishing proportion of Latin squares have a Hamilton transversal, that is, a full transversal for which any proper subset is cycle‐free. In fact, we prove a counting result that in almost all Latin squares, the number of Hamilton transversals is essentially that of Taranenko's upper bound on the number of full transversals. This result strengthens a result of Kwan (which in turn implies that almost all Latin squares also satisfy the famous Ryser–Brualdi–Stein conjecture).

Locations

  • arXiv (Cornell University) - View - PDF
  • University of Birmingham Research Portal (University of Birmingham) - View - PDF
  • Random Structures and Algorithms - View - PDF

Similar Works

Action Title Year Authors
+ Hamilton transversals in random Latin squares 2021 Stephen Jay Gould
Tom Kelly
+ Rainbow matchings and cycle-free partial transversals of Latin squares 2014 András Gyárfás
Gábor N. Sárközy
+ Transversals in Latin Squares 2009 Ian M. Wanless
+ Transversals in Latin Squares 2009 Ian M. Wanless
+ Rainbow matchings and partial transversals of Latin squares 2012 András Gyárfás
Gábor N. Sárközy
+ PDF Chat Almost every Latin square has a decomposition into transversals 2025 Candida Bowtell
Richard Montgomery
+ Transversals in quasirandom latin squares 2022 Sean Eberhard
Freddie Manners
Rudi Mrazović
+ PDF Chat Transversals in quasirandom latin squares 2023 Sean Eberhard
Freddie Manners
Rudi Mrazović
+ PDF Chat Covers and partial transversals of Latin squares 2018 Darcy Best
Trent G. Marbach
Rebecca J. Stones
Ian M. Wanless
+ New bounds for Ryser's conjecture and related problems 2020 Peter Keevash
Alexey Pokrovskiy
Benny Sudakov
Liana Yepremyan
+ Covers and partial transversals of Latin squares 2017 Darcy Best
Trent G. Marbach
Rebecca J. Stones
Ian M. Wanless
+ Covers and partial transversals of Latin squares 2017 Darcy Best
Trent G. Marbach
Rebecca J. Stones
Ian M. Wanless
+ Completions of ε-Dense Partial Latin Squares 2013 Padraic Bartlett
+ PDF Chat Almost-full transversals in equi-$n$-squares 2024 Debsoumya Chakraborti
Micha Christoph
Zach Hunter
Richard Montgomery
Т. Г. Петров
+ PDF Chat On the Length of a Partial Independent Transversal in a Matroidal Latin Square 2012 Daniel Kotlar
Ziv Ran
+ On the Length of a Partial Independent Transversal in a Matroidal Latin Square 2012 Daniel Kotlar
Ziv Ran
+ On the maximum number of Latin transversals 2015 Roman Glebov
Zur Luria
+ On the maximum number of Latin transversals 2015 Roman Glebov
Zur Luria
+ Completions of epsilon-dense partial Latin squares; quasirandom k-colorings of graphs 2013 Padraic Bartlett
+ PDF Chat A Generalisation of Transversals for Latin Squares 2002 Ian M. Wanless

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Transversals in Latin Squares 2024 Richard Montgomery