On superintegral Kleinian sphere packings, bugs, and arithmetic groups

Type: Article

Publication Date: 2023-03-27

Citations: 8

DOI: https://doi.org/10.1515/crelle-2023-0004

Abstract

Abstract We develop the notion of a Kleinian Sphere Packing, a generalization of “crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441]. Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such. We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>ℚ</m:mi> </m:math> {{\mathbb{Q}}} -arithmetic lattices of simplest type. The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mfrac> <m:mi>π</m:mi> <m:mi>m</m:mi> </m:mfrac> </m:math> {\frac{\pi}{m}} for finitely many m . We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii) that integral packings only arise from non-uniform lattices.

Locations

  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ On Superintegral Kleinian Sphere Packings, Bugs, and Arithmetic Groups 2021 Michael Kapovich
Alex Kontorovich
+ Kleinian sphere packings, reflection groups, and arithmeticity 2022 Nikolay Bogachev
A. G. Kolpakov
Alex Kontorovich
+ PDF Chat Kleinian sphere packings, reflection groups, and arithmeticity 2023 Nikolay Bogachev
A. G. Kolpakov
Alex Kontorovich
+ A Taxonomy of Crystallographic Sphere Packings 2019 Debra Chait
Alisa Cui
Zachary Stier
+ A Taxonomy of Crystallographic Sphere Packings 2019 Debra Chait
Alisa Cui
Zachary Stier
+ PDF Chat Counting problems in Apollonian packings 2013 Elena Fuchs
+ PDF Chat A taxonomy of crystallographic sphere packings 2019 Devora Chait-Roth
Alisa Cui
Zachary Stier
+ Geometry and Arithmetic of Crystallographic Sphere Packings 2017 Alex Kontorovich
Kei Nakamura
+ Lattices and Applications in Number Theory 2016 Renaud Coulangeon
Benedict H. Gross
Gabriele Nebe
+ Sphere packings, lattices and groups 1990 Gian‐Carlo Rota
+ PDF Chat An illustrated introduction to the arithmetic of Apollonian circle packings, continued fractions, and other thin orbits 2024 Katherine E. Stange
+ Perfect packing of cubes 2018 Antal Joós
+ PDF Chat On the local-global principle for integral Apollonian 3-circle packings 2015 Xin Zhang
+ Regular polytopes, sphere packings and Apollonian sections 2021 Iván Rasskin
+ Mordell-Weil Lattices and Sphere Packings 1991 Tetsuji Shioda
+ Motzkin subposets and Motzkin geodesics in Tamari lattices 2013 Jean-Luc Baril
Jean Marcel Pallo
+ Geodesic ball packings generated by regular prism tilings in $\mathbf{Nil}$ geometry 2016 Benedek Schultz
Jenő Szirmai
+ On the Local-Global Principle for Integral Apollonian-3 Circle Packings 2013 Xin Zhang
+ Holes in Sphere Packings 2008
+ PDF Chat Some Experiments with Integral Apollonian Circle Packings 2011 Elena Fuchs
Katherine Sanden