A localized Erdős-Kac theorem

Type: Article

Publication Date: 2021-05-06

Citations: 1

DOI: https://doi.org/10.46298/hrj.2021.7433

Abstract

Let ω_y (n) be the number of distinct prime divisors of n not exceeding y. If y_n is an increasing function of n such that log y_n = o(log n), we study the distribution of ω_{y_n} (n) and establish an analog of the Erdős-Kac theorem for this function. En route, we also prove a variant central limit theorem for random variables, which are not necessarily independent, but are well approximated by independent random variables.

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Hardy-Ramanujan Journal - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A localized Erdős-Kac theorem for $\omega_y(p+a)$ 2023 Anup B. Dixit
M Murty
+ An Erdős-Kac theorem for Smooth and Ultra-Smooth integers 2017 Marzieh Mehdizadeh
+ An Erdős-Kac theorem for integers with dense divisors 2022 Gérald Tenenbaum
Andreas Weingartner
+ A Generalization of the Erdős-Kac Theorem 2020 Joseph Squillace
+ An information-theoretic proof of the Erdős-Kac theorem 2022 Aidan Rocke
+ An Erdős–Kac theorem for integers with dense divisors 2022 Gérald Tenenbaum
Andreas Weingartner
+ PDF Chat The Entropic Erdős-Kac Limit Theorem 2014 S. G. Bobkov
G. P. Chistyakov
Holger Kösters
+ PDF Chat A weighted version of the Erdős–Kac theorem 2021 Rizwanur Khan
Micah B. Milinovich
Unique Subedi
+ A Note on the Erdös-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A Note on the Erdos-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ PDF Chat Théorème d’Erdős–Kac dans presque tous les petits intervalles 2018 Élie Goudout
+ PDF Chat An Extended Version of the Erdos-Renyi Strong Law of Large Numbers 1989 David M. Mason
+ Moderate and Large Deviations for the Erd\H{o}s-Kac Theorem 2013 Behzad Mehrdad
Lingjiong Zhu
+ Extensions of the Erdös-Ko-Rado theorem and a statistical application 1977 Thomas M. Liggett
+ Moderate and Large Deviations for the Erdős-Kac Theorem 2013 Behzad Mehrdad
Lingjiong Zhu
+ PDF Chat A Generalization of the Erd\H{o}s-Kac Theorem 2024 Joseph Squillace
+ MODERATE AND LARGE DEVIATIONS FOR THE ERDŐS–KAC THEOREM 2016 Behzad Mehrdad
Lingjiong Zhu
+ A new proof of the Erdos-Kac central limit theorem 2023 M. Cranston
Thomas Mountford
+ PDF Chat The Erdős–Kac theorem and its generalizations 2008 Wentang Kuo
Yuru Liu
+ Generalizations of the Erdős–Kac Theorem and the Prime Number Theorem 2023 Biao Wang
Zhining Wei
Pan Yan
Shaoyun Yi

Works That Cite This (1)

Action Title Year Authors
+ An all-purpose Erdös-Kac theorem 2023 M. Ram Murty
V. Kumar Murty
Sudhir Pujahari