PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs

Type: Article

Publication Date: 2021-05-18

Citations: 8

DOI: https://doi.org/10.1609/aaai.v35i11.17154

Abstract

Spherical signals exist in many applications, e.g., planetary data, LiDAR scans and digitalization of 3D objects, calling for models that can process spherical data effectively. It does not perform well when simply projecting spherical data into the 2D plane and then using planar convolution neural networks (CNNs), because of the distortion from projection and ineffective translation equivariance. Actually, good principles of designing spherical CNNs are avoiding distortions and converting the shift equivariance property in planar CNNs to rotation equivariance in the spherical domain. In this work, we use partial differential operators (PDOs) to design a spherical equivariant CNN, PDO-eS2CNN, which is exactly rotation equivariant in the continuous domain. We then discretize PDO-eS2CNNs, and analyze the equivariance error resulted from discretization. This is the first time that the equivariance error is theoretically analyzed in the spherical domain. In experiments, PDO-eS2CNNs show greater parameter efficiency and outperform other spherical CNNs significantly on several tasks.

Locations

  • Proceedings of the AAAI Conference on Artificial Intelligence - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDO-eS2CNNs: Partial Differential Operator Based Equivariant Spherical CNNs 2021 Zhengyang Shen
Tiancheng Shen
Zhouchen Lin
Jinwen Ma
+ PDO-e$\text{S}^\text{2}$CNNs: Partial Differential Operator Based Equivariant Spherical CNNs 2021 Zhengyang Shen
Tiancheng Shen
Zhouchen Lin
Jinwen Ma
+ PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs 2022 Zhengyang Shen
Tao Hong
Qi She
Jinwen Ma
Zhouchen Lin
+ Spherical Convolutional Neural Networks: Stability to Perturbations in SO(3) 2020 Zhan Gao
Fernando Gama
Alejandro Ribeiro
+ Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions 2022 Jeremy Ocampo
Matthew A. Price
Jason D. McEwen
+ Spin-Weighted Spherical CNNs 2020 Carlos Esteves
Ameesh Makadia
Kostas Daniilidis
+ Spin-Weighted Spherical CNNs 2020 Carlos Esteves
Ameesh Makadia
Kostas Daniilidis
+ Spin-Weighted Spherical CNNs 2020 Carlos Esteves
Ameesh Makadia
Kostas Daniilidis
+ SO(2) and O(2) Equivariance in Image Recognition with Bessel-Convolutional Neural Networks 2023 Valentin Delchevalerie
A. Mayer
Adrien Bibal
Benoît Frénay‬
+ Spherical CNNs on Unstructured Grids 2019 Chiyu Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
+ Spherical CNNs on Unstructured Grids 2019 Chiyu Max Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
+ Spherical CNNs on Unstructured Grids 2019 Chiyu Max Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
+ Scattering Networks on the Sphere for Scalable and Rotationally Equivariant Spherical CNNs 2021 Jason D. McEwen
Christopher G. R. Wallis
Augustine N. Mavor-Parker
+ Scattering Networks on the Sphere for Scalable and Rotationally Equivariant Spherical CNNs. 2021 Jason D. McEwen
Christopher G. R. Wallis
Augustine N. Mavor-Parker
+ Nonlinearities in Steerable SO(2)-Equivariant CNNs 2021 Daniel Franzen
Michael Wand
+ Gauge Equivariant Convolutional Networks and the Icosahedral CNN 2019 Taco Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
+ Spherical Transformer: Adapting Spherical Signal to CNNs 2021 Yuqi Liu
Yin Wang
Haikuan Du
Shen Cai
+ PDF Chat Differential Invariants for SE(2)-Equivariant Networks 2022 Mateus Sangalli
Samy Blusseau
Santiago Velasco-Forero
Jesús Angulo
+ Möbius Convolutions for Spherical CNNs 2022 Thomas W. Mitchel
Noam Aigerman
Vladimir G. Kim
Michael Kazhdan
+ Efficient Generalized Spherical CNNs 2020 Oliver Cobb
Christopher G. R. Wallis
Augustine N. Mavor-Parker
Augustin Marignier
Matthew A. Price
Mayeul d’Avezac
Jason D. McEwen