Action-Conditioned 3D Human Motion Synthesis with Transformer VAE

Type: Article

Publication Date: 2021-10-01

Citations: 293

DOI: https://doi.org/10.1109/iccv48922.2021.01080

Abstract

We tackle the problem of action-conditioned generation of realistic and diverse human motion sequences. In contrast to methods that complete, or extend, motion sequences, this task does not require an initial pose or sequence. Here we learn an action-aware latent representation for human motions by training a generative variational autoencoder (VAE). By sampling from this latent space and querying a certain duration through a series of positional encodings, we synthesize variable-length motion sequences conditioned on a categorical action. Specifically, we design a Transformer-based architecture, ACTOR, for encoding and decoding a sequence of parametric SMPL human body models estimated from action recognition datasets. We evaluate our approach on the NTU RGB+D, HumanAct12 and UESTC datasets and show improvements over the state of the art. Furthermore, we present two use cases: improving action recognition through adding our synthesized data to training, and motion denoising. Code and models are available on our project page.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Recurrent Transformer Variational Autoencoders for Multi-Action Motion Synthesis 2022 Rania Briq
Chuhang Zou
Leonid Pishchulin
Chris Broaddus
JĂŒergen Gall
+ Implicit Neural Representations for Variable Length Human Motion Generation 2022 Pablo Cervantes
Yusuke Sekikawa
Ikuro Sato
Koichi Shinoda
+ HiT-DVAE: Human Motion Generation via Hierarchical Transformer Dynamical VAE 2022 Xiaoyu Bie
W. Guo
Simon Leglaive
Lauren Girin
Francesc Moreno-Noguer
Xavier Alameda-Pineda
+ PoseGPT: Quantization-based 3D Human Motion Generation and Forecasting 2022 Thomas G. Lucas
Fabien Baradel
Philippe Weinzaepfel
Grégory Rogez
+ PDF Chat ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation 2023 Liang Xu
Ziyang Song
Dongliang Wang
Jing Su
Zhicheng Fang
Chenjing Ding
Weihao Gan
Yichao Yan
Xin Jin
Xiaokang Yang
+ ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation 2022 Ziyang Song
Dongliang Wang
Nan Jiang
Zhicheng Fang
Chenjing Ding
Weihao Gan
Wei Wu
+ TEMOS: Generating diverse human motions from textual descriptions 2022 Mathis Petrovich
Michael J. Black
GĂŒl Varol
+ Conditional Temporal Variational AutoEncoder for Action Video Prediction 2021 Xiaogang Xu
Yi Wang
Liwei Wang
Bei Yu
Jiaya Jia
+ Scene-aware Generative Network for Human Motion Synthesis 2021 Jingbo Wang
Sijie Yan
Bo Dai
Dahua Lin
+ PDF Chat Multi-Resolution Generative Modeling of Human Motion from Limited Data 2024 David Eduardo Moreno-Villamarin
Anna Hilsmann
Peter Eisert
+ Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion 2021 Anthony Bourached
Robert Gray
Ryan‐Rhys Griffiths
Ashwani Jha
Parashkev Nachev
+ Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion 2021 Anthony Bourached
Robert M. Gray
Xiao-dong Guan
Ryan‐Rhys Griffiths
Ashwani Jha
Parashkev Nachev
+ PDF Chat Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion 2021 Anthony Bourached
Robert M. Gray
Ryan‐Rhys Griffiths
Ashwani Jha
Parashkev Nachev
+ PDF Chat Scene-aware Generative Network for Human Motion Synthesis 2021 Jingbo Wang
Sijie Yan
Bo Dai
Dahua Lin
+ PDF Chat Action-conditioned On-demand Motion Generation 2022 Qiujing Lu
Yipeng Zhang
Mingjian Lu
Vwani Roychowdhury
+ Action-conditioned On-demand Motion Generation 2022 Qiujing Lu
Yipeng Zhang
Mingjian Lu
Vwani Roychowdhury
+ PDF Chat Diversity-promoting human motion interpolation via conditional variational auto-encoder 2022 Chunzhi Gu
Shuofeng Zhao
Chao Zhang
+ Diversity-Promoting Human Motion Interpolation via Conditional Variational Auto-Encoder 2021 Chunzhi Gu
Shuofeng Zhao
Chao Zhang
+ T2M-HiFiGPT: Generating High Quality Human Motion from Textual Descriptions with Residual Discrete Representations 2023 Congyi Wang
+ MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics 2018 Xinchen Yan
Akash Rastogi
Ruben Villegas
Kalyan Sunkavalli
Eli Shechtman
Sunil Hadap
Ersin Yumer
Honglak Lee