Symmetry structure of the interactions in near-BPS corners of $$ \mathcal{N} $$ = 4 super-Yang-Mills

Type: Article

Publication Date: 2021-04-01

Citations: 11

DOI: https://doi.org/10.1007/jhep04(2021)029

Abstract

A bstract We consider limits of $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 4 super-Yang-Mills (SYM) theory that approach BPS bounds. These limits result in non-relativistic near-BPS theories that describe the effective dynamics near the BPS bounds and upon quantization are known as Spin Matrix theories. The near-BPS theories can be obtained by reducing $$ \mathcal{N} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> = 4 SYM on a three-sphere and integrating out the fields that become non-dynamical in the limits. We perform the sphere reduction for the near-BPS limit with SU(1 , 2 | 2) symmetry, which has several new features compared to the previously considered cases with SU(1) symmetry, including a dynamical gauge field. We discover a new structure in the classical limit of the interaction term. We show that the interaction term is built from certain blocks that comprise an irreducible representation of the SU(1 , 2 | 2) algebra. Moreover, the full interaction term can be interpreted as a norm in the linear space of this representation, explaining its features including the positive definiteness. This means one can think of the interaction term as a distance squared from saturating the BPS bound. The SU(1 , 1 | 1) near-BPS theory, and its subcases, is seen to inherit these features. These observations point to a way to solve the strong coupling dynamics of these near-BPS theories.

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Symmetry structure of the interactions in near-BPS corners of $ \mathcal{N} = 4$ super-Yang-Mills. 2020 Stefano Baiguera
Troels Harmark
Yang Lei
Nico Wintergerst
+ PDF Chat Nonrelativistic near-BPS corners of $$ \mathcal{N} $$ = 4 super-Yang-Mills with SU(1, 1) symmetry 2021 Stefano Baiguera
Troels Harmark
Nico Wintergerst
+ PDF Chat Spin Matrix Theory in near $$ \frac{1}{8} $$-BPS corners of $$ \mathcal{N} $$ = 4 super-Yang-Mills 2022 Stefano Baiguera
Troels Harmark
Yang Lei
+ PDF Chat Nonrelativistic Corners of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> Supersymmetric Yang-Mills Theory 2020 Troels Harmark
Nico Wintergerst
+ PDF Chat The Panorama of Spin Matrix theory 2023 Stefano Baiguera
Troels Harmark
Yang Lei
+ PDF Chat Far beyond the planar limit in strongly-coupled $$ \mathcal{N} $$ = 4 SYM 2021 Shai M. Chester
Silviu S. Pufu
+ PDF Chat Constructing $$ \mathcal{N} $$ = 4 Coulomb branch superamplitudes 2019 Aidan Herderschee
Seth Koren
Timothy Trott
+ The Panorama of Spin Matrix Theory 2022 Stefano Baiguera
Troels Harmark
Yang Lei
+ PDF Chat Single particle operators and their correlators in free $$ \mathcal{N} $$ = 4 SYM 2020 Francesco Aprile
J. M. Drummond
Paul Heslop
H. Paul
Francesco Sanfilippo
M. Santagata
Alastair Stewart
+ BPS and near-BPS black holes in $AdS_5$ and their spectrum in $\mathcal{N}=4$ SYM 2022 Jan Boruch
Matthew Heydeman
Luca V. Iliesiu
Gustavo J. Turiaci
+ PDF Chat Complete supersymmetric quantum mechanics of magnetic monopoles in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn><mml:mn /></mml:math>super Yang-Mills theory 2000 Dongsu Bak
Kimyeong Lee
Piljin Yi
+ Non-relativistic corners of ${\cal N} = 4$ super Yang-Mills theory 2019 Troels Harmark
Nico Wintergerst
+ PDF Chat Black Holes in 4D <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> Super-Yang-Mills Field Theory 2020 Francesco Benini
Paolo Milan
+ PDF Chat Rebooting quarter-BPS operators in $$ \mathcal{N} $$ = 4 super Yang-Mills 2022 Agnese Bissi
Giulia Fardelli
Andrea Manenti
+ PDF Chat BPS states and automorphisms 2000 Jordi Molins
Joan Simón
+ Large Charge 't Hooft Limit of $\mathcal{N}=4$ Super-Yang-Mills 2023 João Caetano
Shota Komatsu
Yifan Wang
+ PDF Chat Novel wall-crossing behaviour in rank one $$ \mathcal{N} $$ = 2* gauge theory 2021 Philipp Rüter
Richard J. Szabo
+ COMPUTING THE WILSON LOOP IN $\mathcal{N} = 4$ SUPER-YANG-MILLS THEORY 2002 Gordon W. Semenoff
+ PDF Chat Bootstrapping mixed correlators in $$ \mathcal{N} $$ = 4 super Yang-Mills 2021 Agnese Bissi
Andrea Manenti
Alessandro Vichi
+ PDF Chat Rotating restricted Schur polynomials 2017 Nicholas Bornman
Robert de Mello Koch
Laila Tribelhorn