The orbit method and analysis of automorphic forms

Type: Article

Publication Date: 2021-01-01

Citations: 13

DOI: https://doi.org/10.4310/acta.2021.v226.n1.a1

Abstract

We develop the orbit method in a quantitative form, along the lines of microlocal analysis, and apply it to the analytic theory of automorphic forms. Our main global application is an asymptotic formula for averages of Gan--Gross--Prasad periods in arbitrary rank. The automorphic form on the larger group is held fixed, while that on the smaller group varies over a family of size roughly the fourth root of the conductors of the corresponding $L$-functions. Ratner's results on measure classification provide an important input to the proof. Our local results include asymptotic expansions for certain special functions arising from representations of higher rank Lie groups, such as the relative characters defined by matrix coefficient integrals as in the Ichino--Ikeda conjecture.

Locations

  • Acta Mathematica - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The orbit method and analysis of automorphic forms 2018 Paul D. Nelson
Akshay Venkatesh
+ Automorphicity and mean-periodicity 2017 Thomas Oliver
+ Applications of analytic newvectors for $\mathrm{GL}(r)$ 2020 Subhajit Jana
+ The Analytic Theory of Automorphic Forms 2012 Valentin Blomer
Philippe Michel
S. J. Patterson
+ Spectral reciprocity via integral representations 2020 Ramon M. Nunes
+ PDF Chat Spectral reciprocity via integral representations 2023 Ramon M. Nunes
+ PDF Chat Applications of analytic newvectors for $$\mathrm {GL}(n)$$ 2021 Subhajit Jana
+ Automorphicity and Mean-Periodicity 2013 Thomas Oliver
+ Automorphicity and Mean-Periodicity 2013 Thomas Oliver
+ Automorphic representations and L-functions : proceedings of the International Colloquium, Mumbai 2012 2013 L-functions
Dipendra Prasad
C. S. Rajan
A. Sankaranarayanan
Jyoti Sengupta
+ Automorphic Forms and Arithmetic 2018 Valentin Blomer
Emmanuel Kowalski
Philippe Michel
+ PDF Chat Asymptotic behaviors of means of central values of automorphic L-functions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="italic">GL</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2015 Shingo Sugiyama
+ Collected works of Hervé Jacquet 2011 Hervé Jacquet
Dorian Goldfeld
+ The relative trace formula and periods of automorphic forms 2014 Omer Offen
+ Spectral aspect subconvex bounds for ${\rm U}_{n+1} \times {\rm U}_{n}$ 2020 Paul D. Nelson
+ Spectral aspect subconvex bounds for ${\rm U}_{n+1} \times {\rm U}_{n}$ 2020 Paul D. Nelson
+ PDF Chat Automorphic period and the central value of Rankin-Selberg L-function 2014 Wei Zhang
+ Eisenstein series and the cubic moment for PGL(2) 2019 Paul D. Nelson
+ Eisenstein series and the cubic moment for PGL(2) 2019 Paul D. Nelson
+ Periods and global invariants of automorphic representations 2013 Joseph Bernstein
André Reznikov