We characterize, up to Lie isomorphism, the real Lie groups that are definable in an o-minimal expansion of the real field. For any such group, we find a Lie-isomorphic group definable in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Subscript exp"> <mml:semantics> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>exp</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\mathbb {R}_{\exp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which any Lie automorphism is definable.
Login to see paper summary