The full spectrum of random walks on complete finite d-ary trees

Type: Article

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.1214/21-ejp608

Abstract

In the present paper, we determine the full spectrum of the simple random walk on finite, complete d-ary trees. We also find an eigenbasis for the transition matrix. As an application, we apply our results to get a lower bound for the interchange process on complete, finite d-ary trees, which we conjecture to be sharp.

Locations

  • Electronic Journal of Probability - View - PDF

Similar Works

Action Title Year Authors
+ On the spectrum of random walks on complete finite $d$-ary trees 2019 Evita Nestoridi
Oanh Kieu Nguyen
+ On the spectrum of random walks on complete finite $d$-ary trees 2019 Evita Nestoridi
Hoi H. Nguyen
+ Recurrence and Transience for Branching Random Walks in an iid Random Environment 2006 Sebastian Müller
+ Recurrence and Transience for Branching Random Walks in an iid Random Environment 2008 Sebastian Müller
+ A survey of the random walk theory 1984 Douglas E. Guffy
+ OF d-DIMENSIONAL RANDOM WALK' 2016 Philip S. Griffin
+ Cutpoints and exchangeable events for random walks 1996 Nicholas James
Nicholas James
Yuval Peres
Yuval Peres
+ Note on discrete random walks 1978 Stephan Foldes
Grzegorz Gabor
+ Random walks and other aspects of the Bailey–Daum distribution 2002 Adrienne W. Kemp
+ On a Class of One-Dimensional Random Walks 1996 Onno Boxma
+ PDF Chat Random Walks and Trees 2011 Zhan Shi
+ PDF Chat Open quantum random walks and quantum Markov Chains on trees II: the recurrence 2023 Farrukh Mukhamedov
Abdessatar Souissi
Tarek Hamdi
Amenallah Andolsi
+ A tauberian theorem for random walk 1968 Harry Kesten
+ PDF Chat Deterministic random walks on regular trees: Deterministic Random Walks on Regular Trees 2010 Joshua Cooper
Benjamin Doerr
Tobias Friedrich
Joel Spencer
+ Random Discrete Structures 1996 David Aldous
Robin Pemantle
+ PDF Chat Stochastic Analysis for Obtuse Random Walks 2013 Uwe Franz
Tarek Hamdi
+ Random Walks 2017 Mogens Bladt
Bo Friis Nielsen
+ Elements of random walk theory 2022
+ A non-integral-dimensional random walk 1990 Damon Scott
+ PDF Chat Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree 2011 Martin T. Barlow
Robert Masson

Works That Cite This (0)

Action Title Year Authors