Quantum Mechanics-Based Signal and Image Representation: Application to Denoising

Type: Article

Publication Date: 2021-01-01

Citations: 35

DOI: https://doi.org/10.1109/ojsp.2021.3067507

Abstract

Decomposition of digital signals and images into other basis or dictionaries than time or space domains is a very common approach in signal and image processing and analysis. Such a decomposition is commonly obtained using fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In this work, we investigate in detail a new approach of constructing such a signal or image-dependent bases inspired by quantum mechanics tools, i.e., by considering the signal or image as a potential in the discretized Schroedinger equation. To illustrate the potential of the proposed decomposition, denoising results are reported in the case of Gaussian, Poisson, and speckle noise and compared to the state of the art algorithms based on wavelet shrinkage, total variation regularization or patch-wise sparse coding in learned dictionaries, non-local means image denoising, and graph signal processing.

Locations

  • IEEE Open Journal of Signal Processing - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Image Denoising Inspired by Quantum Many-Body physics 2021 Sayantan Dutta
Adrian Basarab
Bertrand Georgeot
Denis Kouamé
+ PDF Chat Adaptive transform via quantum signal processing: application to signal and image denoising 2018 Raphael Smith
Adrian Basarab
Bertr Georgeot
Denis Kouamé
+ PDF Chat A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body Theory 2022 Sayantan Dutta
Adrian Basarab
Bertrand Georgeot
Denis Kouamé
+ PDF Chat Quantum inspired approach for denoising with application to medical imaging 2024 Amirreza Hashemi
Sayantan Dutta
Bertrand Georgeot
Denis Kouamé
Hamid Sabet
+ Image denoising using the squared eigenfunctions of the Schrodinger operator 2015 Zineb Kaisserli
Taous‐Meriem Laleg‐Kirati
+ PDF Chat Quantum median filter for total variation image denoising 2022 Simone De Santis
Damiana Lazzaro
Riccardo Mengoni
Serena Morigi
+ PDF Chat Poisson Image Deconvolution by a Plug-and-Play Quantum Denoising Scheme 2021 Sayantan Dutta
Adrian Basarab
Bertrand Georgeot
Denis Kouamé
+ PDF Chat Quantum Algorithm for Signal Denoising 2023 Sayantan Dutta
Adrian Basarab
Denis Kouamé
Bertrand Georgeot
+ PDF Chat Plug-and-Play Quantum Adaptive Denoiser for Deconvolving Poisson Noisy Images 2021 Sayantan Dutta
Adrian Basarab
Bertrand Georgeot
Denis Kouamé
+ PDF Chat Poisson noise reduction with non-local PCA 2012 Joseph Salmon
C-A. Deledalle
Rebecca Willett
Zachary T. Harmany
+ PDF Chat Signal denoising based on the Schrödinger operator's eigenspectrum and a curvature constraint 2021 Peihao Li
Taous‐Meriem Laleg‐Kirati
+ PDF Chat Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning 2024 Peyman Milanfar
Mauricio Delbracio
+ PDF Chat Sparsity-Based Poisson Denoising With Dictionary Learning 2014 Raja Giryes
Michael Elad
+ Quantum spectral analysis: frequency in time, with applications to signal and image processing 2016 Mario Mastriani
+ PDF Chat Statistical mechanics of dictionary learning 2013 Ayaka Sakata
Yoshiyuki Kabashima
+ A Robust Dictionary Learning Algorithm for Image Denoising. 2014 Subhadip Mukherjee
Rupam Basu
Chandra Sekhar Seelamantula
+ Statistical modeling and denoising Wigner–Ville distribution 2012 Maryam Amirmazlaghani
Hamidreza Amindavar
+ Quantum Boolean Image Denoising 2014 Mario Mastriani
+ Quantum Boolean Image Denoising 2014 Mario Mastriani
+ Quaternion wavelet image denoising based on non-Gaussian distribution 2013 Ming Yin
Wei Liu