What is the Largest Sparsity Pattern That Can Be Recovered by 1-Norm Minimization?

Type: Article

Publication Date: 2021-03-18

Citations: 1

DOI: https://doi.org/10.1109/tit.2021.3067280

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ What is the Largest Sparsity Pattern that Can Be Recovered by 1-Norm Minimization? 2019 Mustafa Devrim Kaba
Zhao Mengnan
René Vidal
Daniel P. Robinson
Enrique Mallada
+ Generalized Nullspace Property for Structurally Sparse Signals 2019 Mustafa Devrim Kaba
Mengnan Zhao
René Vidal
Daniel P. Robinson
Enrique Mallada
+ PDF Chat Sparse Recovery over Graph Incidence Matrices 2018 Mengnan Zhao
Mustafa Devrim Kaba
René Vidal
Daniel P. Robinson
Enrique Mallada
+ Matrix Decompositions and Sparse Graph Regularity. 2019 Greg Bodwin
Santosh Vempala
+ The minimal measurement number for low-rank matrices recovery 2015 Zhiqiang Xu
+ The minimal measurement number for low-rank matrices recovery 2015 Zhiqiang Xu
+ Sparse Recovery of Positive Signals with Minimal Expansion 2009 M. Amin Khajehnejad
Alexandros G. Dimakis
Weiyu Xu
Babak Hassibi
+ PDF Chat On Structural Rank and Resilience of Sparsity Patterns 2022 Mohamed-Ali Belabbas
Xudong Chen
Daniel Zelazo
+ An Efficient Sparse Regularity Concept 2010 Coja-OghlanAmin
CooperColin
FriezeAlan
+ An extremal sparsity property of the Jordan canonical form 2007 Richard A. Brualdi
Pei Pei
Xingzhi Zhan
+ Nearly Sharp Sufficient Conditions on Exact Sparsity Pattern Recovery 2011 Kamiar Rahnama Rad
+ Sparse Approximation is Hard 2011 Ali Çivril
+ PDF Chat Efficient Recovery of Sparse Graph Signals from Graph Filter Outputs 2024 Gal Morgenstern
Tirza Routtenberg
+ On Structural Rank and Resilience of Sparsity Patterns 2021 Mohamed-Ali Belabbas
Xudong Chen
Daniel Zelazo
+ Sparse Recovery with Graph Constraints: Fundamental Limits and Measurement Construction 2011 Meng Wang
Weiyu Xu
Enrique Mallada
Ao Tang
+ Variants on the minimum rank problem: A survey II 2011 Shaun Fallat
Leslie Hogben
+ An efficient regularity concept for sparse graphs and matrices 2009 Amin Coja‐Oghlan
Colin Cooper
Alan Frieze
+ Computing and Analyzing Recoverable Supports for Sparse Reconstruction 2013 Christian Kruschel
Dirk A. Lorenz
+ Computing and Analyzing Recoverable Supports for Sparse Reconstruction 2013 Christian Kruschel
Dirk A. Lorenz
+ PDF Chat PhaseCode: Fast and Efficient Compressive Phase Retrieval Based on Sparse-Graph Codes 2017 Ramtin Pedarsani
Dong Yin
Kangwook Lee
Kannan Ramchandran

Works That Cite This (0)

Action Title Year Authors