The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation

Type: Preprint

Publication Date: 2021-01-01

Citations: 3

DOI: https://doi.org/10.48550/arxiv.2103.11488

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation 2022 Qiang Du
Yiqi Gu
Haizhao Yang
Chao Zhou
+ Error analysis based on inverse modified differential equations for discovery of dynamics using linear multistep methods and deep learning 2022 Aiqing Zhu
Sidi Wu
Yifa Tang
+ PDF Chat Discovering Dynamics with Kolmogorov Arnold Networks: Linear Multistep Method-Based Algorithms and Error Estimation 2025 Jintao Hu
Hongjiong Tian
Qian Guo
+ PDF Chat Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation 2024 Caitlin Ho
Andrea Arnold
+ Discovery of Dynamics Using Linear Multistep Methods 2019 Rachael T. Keller
Qiang Du
+ PDF Chat Discovery of Dynamics Using Linear Multistep Methods 2021 Rachael T. Keller
Qiang Du
+ Inverse modified differential equations for discovery of dynamics 2020 Aiqing Zhu
Pengzhan Jin
Yifa Tang
+ Learning Fine Scale Dynamics from Coarse Observations via Inner Recurrence 2022 Victor Churchill
Dongbin Xiu
+ PDF Chat LEARNING FINE SCALE DYNAMICS FROM COARSE OBSERVATIONS VIA INNER RECURRENCE 2022 Victor Churchill
Dongbin Xiu
+ A Direct Method to Learn States and Parameters of Ordinary Differential Equations. 2018 Ramin Raziperchikolaei
Ramesa Shafi Bhat
+ Discovery of Governing Equations with Recursive Deep Neural Networks 2020 Jia Zhao
Jarrod Mau
+ PDF Chat Systematic construction of continuous-time neural networks for linear dynamical systems 2024 Chinmay Datar
Adwait Datar
Felix Dietrich
W.H.A. Schilders
+ PDF Chat Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs 2022 Franck Djeumou
Cyrus Neary
Éric Goubault
Sylvie Putot
Ufuk Topcu
+ PDF Chat Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs 2022 Franck Djeumou
Cyrus Neary
Éric Goubault
Sylvie Putot
Ufuk Topcu
+ Homotopy-based training of NeuralODEs for accurate dynamics discovery 2022 Joon-Hyuk Ko
Hankyul Koh
Nojun Park
Wonho Jhe
+ Solving multiscale dynamical systems by deep learning 2024 Zhi‐Qin John Xu
Junjie Yao
Yuxiao Yi
Liangkai Hang
E Weinan
Yaoyu Zhang
Tianhan Zhang
+ PDF Chat Deep learning for model correction of dynamical systems with data scarcity 2024 Caroline Tatsuoka
Dongbin Xiu
+ PDF Chat Augmenting physical models with deep networks for complex dynamics forecasting* 2021 Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
+ PDF Chat Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning 2020 Han Gao
Jianxun Wang
Matthew J. Zahr
+ PDF Chat Augmenting physical models with deep networks for complex dynamics forecasting 2021 Yuan Yin
Vincent Le Guen
Jérémie Donà
Ibrahim Ayed
Emmanuel de Bézenac
Nicolas Thome
Patrick Gallinari