Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets

Type: Article

Publication Date: 2023-06-15

Citations: 2

DOI: https://doi.org/10.2140/apde.2023.16.1061

Abstract

Let E ⊂ R n+1 be a parabolic uniformly rectifiable set.We prove that every bounded solution u tosatisfies a Carleson measure estimate condition.An important technical novelty of our work is that we develop a corona domain approximation scheme for E in terms of regular Lip(1/2,1) graph domains.This approximation scheme has an analogous elliptic version which is an improvement of the known results in that setting.Contents 1. Introduction 1 2. Preliminaries 4 3. Domain approximation in stopping time regimes 9 4. Carleson Measure Estimates: Proof of Theorems 1.1 and 1.3 18 5.Further remarks 21 Appendix A. Proof of Lemma 3.24 23 References 27

Locations

  • Analysis & PDE - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Uppsala University Publications (Uppsala University) - View - PDF

Similar Works

Action Title Year Authors
+ Carleson measure estimates for caloric functions and parabolic uniformly rectifiable sets 2021 Simon Bortz
John P. Hoffman
Steve Hofmann
José Luis Luna García
Kaj Nyström
+ Carleson measure estimates and $ε$-approximation of bounded harmonic functions, without Ahlfors regularity assumptions 2020 John L. Garnett
+ Carleson measure estimates and $\epsilon$-approximation of bounded harmonic functions, without Ahlfors regularity assumptions 2020 John B. Garnett
+ PDF Chat Uniform rectifiability from Carleson measure estimates and ε-approximability of bounded harmonic functions 2018 John B. Garnett
Mihalis Mourgoglou
Xavier Tolsa
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2021 Steve Hofmann
Olli Tapiola
+ PDF Chat Carleson measure estimates and $\varepsilon$-approximation for bounded harmonic functions, without Ahlfors regularity assumptions 2021 John B. Garnett
+ Parabolic quantitative rectifiability 2023 John L. Hoffman
+ Solvability of the $L^p$ Dirichlet problem for the heat equation is equivalent to parabolic uniform rectifiability in the case of a parabolic Lipschitz graph 2023 Simon Bortz
Steven Hofmann
José María Martell
Kaj Nyström
+ Parabolic exhaustions for strictly convex domains 1984 Giorgio Patrizio
+ Carleson measure estimates, corona decompositions, and perturbation of elliptic operators without connectivity 2022 Mingming Cao
Pablo Hidalgo-Palencia
José María Martell
+ Parabolic Singular Integrals on Ahlfors Regular Sets 2014 Jorge Rivera-Noriega
+ Parabolic Singular Integrals and Uniformly Rectifiable Sets in the Parabolic Sense 2011 Jorge Rivera-Noriega
+ PDF Chat Corona Decompositions for Parabolic Uniformly Rectifiable Sets 2023 Simon Bortz
J. William Hoffman
Steve Hofmann
José Luis Luna-Garcia
Kaj Nyström
+ Green functions and smooth distances 2022 Joseph Feneuil
Linhan Li
Svitlana Mayboroda
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Solvability of the $\mathrm{L}^{p}$ Dirichlet problem for the heat equation is equivalent to parabolic uniform rectifiability in the case of a parabolic Lipschitz graph 2024 Simon Bortz
Steve Hofmann
José María Martell
Kaj Nyström
+ PDF Chat Coronizations and big pieces in metric spaces 2022 Simon Bortz
John W. Hoffman
Steve Hofmann
Jose Luis Luna-Garcia
Kaj Nyström