Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation

Type: Preprint

Publication Date: 2021-03-24

Citations: 7

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation 2021 Andrea Zanette
Ching-An Cheng
Alekh Agarwal
+ Randomized Exploration for Reinforcement Learning with General Value Function Approximation 2021 Haque Ishfaq
Qiwen Cui
Việt Dũng Nguyễn
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
+ Randomized Exploration for Reinforcement Learning with General Value Function Approximation 2021 Haque Ishfaq
Qiwen Cui
Việt Hưng Nguyễn
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
+ PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning 2020 Alekh Agarwal
Mikael Henaff
Sham M. Kakade
Wen Sun
+ Optimistic Natural Policy Gradient: a Simple Efficient Policy Optimization Framework for Online RL 2023 Qinghua Liu
Gellért Weisz
András György
Chi Jin
Csaba Szepesvári
+ Provably Efficient Exploration in Policy Optimization 2019 Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
+ PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning 2020 Alekh Agarwal
Mikael Henaff
Sham M. Kakade
Wen Sun
+ Is Pessimism Provably Efficient for Offline RL 2020 Ying Jin
Zhuoran Yang
Zhaoran Wang
+ Provably Correct Optimization and Exploration with Non-linear Policies 2021 Fei Feng
Wotao Yin
Alekh Agarwal
Lin F. Yang
+ Provably Correct Optimization and Exploration with Non-linear Policies 2021 Fei Feng
Wotao Yin
Alekh Agarwal
Lin F. Yang
+ Efficient iterative policy optimization 2017 Nicolas Le Roux
+ Efficient iterative policy optimization 2016 Nicolas Le Roux
+ Is Pessimism Provably Efficient for Offline RL? 2020 Ying Jin
Zhuoran Yang
Zhaoran Wang
+ Bi-Level Offline Policy Optimization with Limited Exploration 2023 Wenzhuo Zhou
+ PDF Chat Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization 2024 Yihan Du
Anna Winnicki
Gal Dalal
Shie Mannor
Ramakrishnan Srikant
+ Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs 2021 Han Zhong
Zhuoran Yang
Zhaoran Wang
Csaba Szepesvári
+ A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes 2023 Han Zhong
Tong Zhang
+ PDF Chat Model-Free Active Exploration in Reinforcement Learning 2024 Alessio Russo
Alexandre Proutière
+ Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation 2022 Christoph Dann
Yishay Mansour
Mehryar Mohri
Ayush Sekhari
Karthik Sridharan
+ Towards Tractable Optimism in Model-Based Reinforcement Learning 2020 Aldo Pacchiano
Philip Ball
Jack Parker-Holder
Krzysztof Choromański
Stephen Roberts