An O(log log m) Prophet Inequality for Subadditive Combinatorial Auctions

Type: Article
Publication Date: 2020-11-01
Citations: 17
DOI: https://doi.org/10.1109/focs46700.2020.00037

Abstract

Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here n agents with subadditive valuation functions compete for the assignment of m items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of O(log m). We make major progress on this question by providing an O(log log m) prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an O(log log m) approximation to the optimal revenue for subadditive valuations under an item-independence assumption.

Locations

  • arXiv (Cornell University)
  • London School of Economics and Political Science Research Online (London School of Economics and Political Science)

Ask a Question About This Paper

Summary

Login to see paper summary

Similar Works

Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case … Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here $n$ agents with subadditive valuation functions compete for the assignment of $m$ items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of $O(\log m)$. We make major progress on this question by providing an $O(\log \log m)$ prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an $O(\log \log m)$ approximation to the optimal revenue for subadditive valuations under an item-independence assumption.
Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case … Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here $n$ agents with subadditive valuation functions compete for the assignment of $m$ items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of $O(\log m)$. We make major progress on this question by providing an $O(\log \log m)$ prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an $O(\log \log m)$ approximation to the optimal revenue for subadditive valuations under an item-independence assumption.
We survey the main results from [Dütting, Kesselheim, and Lucier 2020]: 1 a simple posted-price mechanism for subadditive combinatorial auctions with m items that achieves an O (log log m … We survey the main results from [Dütting, Kesselheim, and Lucier 2020]: 1 a simple posted-price mechanism for subadditive combinatorial auctions with m items that achieves an O (log log m ) approximation to the optimal welfare, plus a variant with entry fees that approximates revenue. These are based on a novel subadditive prophet inequality.
In this paper, we survey literature on prophet inequalities for subadditive combinatorial auctions. We give an overview of the previous best $O(\log \log m)$ prophet inequality as well as the … In this paper, we survey literature on prophet inequalities for subadditive combinatorial auctions. We give an overview of the previous best $O(\log \log m)$ prophet inequality as well as the preceding $O(\log m)$ prophet inequality. Then, we provide the constructive posted price mechanisms used in order to prove the two bounds. We mainly focus on the most recent literature that resolves a central open problem in this area of discovering a constant factor prophet inequality for subadditive valuations. We detail the approach of this new paper, which is $\textit{non-constructive}$ and therefore cannot be implemented using prices, as done in previous literature.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms, and is used to derive new and improved results for combinatorial markets (with and without complements), multi-dimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms and is used to derive new and improved results for combinatorial markets (with and without complements), multidimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.
We study revenue maximization through sequential posted price mechanisms (SPMs) in single-dimensional settings with n buyers, and independent but not necessarily identical value distributions. We construct our SPMs by considering … We study revenue maximization through sequential posted price mechanisms (SPMs) in single-dimensional settings with n buyers, and independent but not necessarily identical value distributions. We construct our SPMs by considering two simple pricing schemes: one that imitates Myerson's mechanism via taxation principle, and the other that posts a uniform price. We design a factor revealing LP that crisply captures the approximation factor of this SPM. In the H-units setting, our SPM yields the first improvement in approximation over the correlation-gap-based approximation factor from over eight years ago (Yan 2011). In the position auction setting, our SPM yields the first higher-than 1-1/e approximation factor. In the 1-unit setting, our SPM yields better than the current best known approximation factor for small values of the number of buyers n. Our results on SPMs immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the recent surge of results that show an improvement over 1-1/e for SPMs, ours is the only technique that generalizes beyond the 1-unit setting, and yields the first improvement over long established approximation factors in several settings.
We design novel mechanisms for welfare maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in … We design novel mechanisms for welfare maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, and budget balance constraints and give constant factor approximations to the optimal social welfare. We improve previous results in several settings. Our main focus is on matroid double auctions. Here, sellers hold identical items, and the set of buyers that obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a 1/3 approximation of the optimal social welfare-satisfying strong budget balance and requiring the agents to trade in a customized order and the second being a 1/2 approximation weakly budget balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant factor approximations in two-sided markets with identical items when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions with heterogeneous items, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism that is a 1/2 approximation of the optimal social welfare, is strongly budget balanced, and can deal with the online arrival of agents in an adversarial order. Funding: A. Braun was funded by the Deutsche Forschungsgemeinschaft [Grant 437739576].
We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of … We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths. Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms. For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality.
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order … We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a $1/3$-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a $1/2$-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with n buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering … We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with n buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the optimal/Myersonian mechanism via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar et al. 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan (2011) and Chakraborty et al. (2010)). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than 1 − 1/e approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting
In online sales, sellers usually offer each potential buyer a posted price in a take-it-or-leave fashion. Buyers can sometimes see posted prices faced by other buyers, and changing the price … In online sales, sellers usually offer each potential buyer a posted price in a take-it-or-leave fashion. Buyers can sometimes see posted prices faced by other buyers, and changing the price frequently could be considered unfair. The literature on posted price mechanisms and prophet inequality problems has studied the two extremes of pricing policies, the fixed price policy and fully dynamic pricing. The former is suboptimal in revenue but is perceived as fairer than the latter. This work examines the middle situation, where there are at most $k$ distinct prices over the selling horizon. Using the framework of prophet inequalities with independent and identically distributed random variables, we propose a new prophet inequality for strategies that use at most $k$ thresholds. We present asymptotic results in $k$ and results for small values of $k$. For $k=2$ prices, we show an improvement of at least $11\%$ over the best fixed-price solution. Moreover, $k=5$ prices suffice to guarantee almost $99\%$ of the approximation factor obtained by a fully dynamic policy that uses an arbitrary number of prices. From a technical standpoint, we use an infinite-dimensional linear program in our analysis; this formulation could be of independent interest to other online selection problems.
We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order … We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a 1/3-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a 1/2-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
A central problem in mechanism design is how to design simple and approximately revenue-optimal auctions in multi-item multi-buyer settings. Prior to our work, all results only apply to cases where … A central problem in mechanism design is how to design simple and approximately revenue-optimal auctions in multi-item multi-buyer settings. Prior to our work, all results only apply to cases where the buyers' valuations are linear over the items. We unify and improve all previous results, as well as generalize the results to accommodate non-linear valuations [Cai and Zhao 2017]. In particular, we prove that a simple, deterministic and Dominant Strategy Incentive Compatible (DSIC) mechanism, namely, the sequential posted price with entry fee mechanism, achieves a constant fraction of the optimal revenue among all randomized, Bayesian Incentive Compatible (BIC) mechanisms, when buyers' valuations are XOS (a superclass of submodular valuations) over independent items. If the buyers' valuations are subadditive over independent items, the approximation factor degrades to O (log m ), where m is the number of items. We obtain our results by first extending the Cai-Devanur-Weinberg duality framework to derive an effective benchmark of the optimal revenue for subadditive buyers, and then developing new analytic tools that combine concentration inequality of subadditive functions, prophet-inequality type of arguments, and a novel decomposition of the benchmark.
We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering … We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than $1-1/e$ approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.
We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering … We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than $1-1/e$ approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.
Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet … Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet inequality: a decision maker is facing a sequence of costs $X_1, X_2, \dots, X_n$ drawn from known distributions in an online manner and \emph{must} ``stop'' at some point and take the last cost seen. The goal is to compete with a ``prophet'' who can see the realizations of all $X_i$'s upfront and always select the minimum, obtaining a cost of $\mathbb{E}[\min_i X_i]$. If the $X_i$'s are not identically distributed, no strategy can achieve a bounded approximation, even for random arrival order and $n = 2$. This leads us to consider the case where the $X_i$'s are independent and identically distributed (I.I.D.). For the I.I.D. case, we show that if the distribution satisfies a mild condition, the optimal stopping strategy achieves a (distribution-dependent) constant-factor approximation to the prophet's cost. Moreover, for MHR distributions, this constant is at most $2$. All our results are tight. We also demonstrate an example distribution that does not satisfy the condition and for which the competitive ratio of any algorithm is infinite. Turning our attention to single-threshold strategies, we design a threshold that achieves a $O\left(polylog{n}\right)$-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. Finally, we note that our results can be used to design approximately optimal posted price-style mechanisms for procurement auctions which may be of independent interest. Our techniques utilize the \emph{hazard rate} of the distribution in a novel way, allowing for a fine-grained analysis which could find further applications in prophet inequalities.
We study the classic single-choice prophet inequality problem through a resource augmentation lens. Our goal is to bound the $(1-\varepsilon)$-competition complexity of different types of online algorithms. This metric asks … We study the classic single-choice prophet inequality problem through a resource augmentation lens. Our goal is to bound the $(1-\varepsilon)$-competition complexity of different types of online algorithms. This metric asks for the smallest $k$ such that the expected value of the online algorithm on $k$ copies of the original instance, is at least a $(1-\varepsilon)$-approximation to the expected offline optimum on a single copy. We show that block threshold algorithms, which set one threshold per copy, are optimal and give a tight bound of $k = \Theta(\log \log 1/\varepsilon)$. This shows that block threshold algorithms approach the offline optimum doubly-exponentially fast. For single threshold algorithms, we give a tight bound of $k = \Theta(\log 1/\varepsilon)$, establishing an exponential gap between block threshold algorithms and single threshold algorithms. Our model and results pave the way for exploring resource-augmented prophet inequalities in combinatorial settings. In line with this, we present preliminary findings for bipartite matching with one-sided vertex arrivals, as well as in XOS combinatorial auctions. Our results have a natural competition complexity interpretation in mechanism design and pricing applications.

Cited by (7)

We study revenue maximization in multi-item multi-bidder auctions under the natural item-independence assumption – a classical problem in Multi-Dimensional Bayesian Mechanism Design. One of the biggest challenges in this area … We study revenue maximization in multi-item multi-bidder auctions under the natural item-independence assumption – a classical problem in Multi-Dimensional Bayesian Mechanism Design. One of the biggest challenges in this area is developing algorithms to compute (approximately) optimal mechanisms that are not brute-force in the size of the bidder type space, which is usually exponential in the number of items in multi-item auctions. Unfortunately, such algorithms were only known for basic settings of our problem when bidders have unit-demand or additive valuations.
We study revenue maximization in multi-item auctions, where bidders have subadditive valuations over independent items [48]. Providing a simple mechanism that is approximately revenue-optimal in this setting is a major … We study revenue maximization in multi-item auctions, where bidders have subadditive valuations over independent items [48]. Providing a simple mechanism that is approximately revenue-optimal in this setting is a major open problem in mechanism design [20]. In this paper, we present the first simple mechanism whose revenue is at least a constant fraction of the optimal revenue in multi-item auctions with subadditive bidders. Our mechanism is a simultaneous auction that incorporates either a personalized entry fee or a personalized reserve price per item. We prove that for any simultaneous auction that satisfies c-efficiency– a new property we propose, its revenue is at least an $O(c)$-approximation to the optimal revenue. We further show that both the simultaneous first-price and the simultaneous all-pay auction are $\frac{1}{2}$-efficient. Providing revenue guarantees for non-truthful simple mechanisms, e.g., simultaneous auctions, in multi-dimensional environments has been recognized by Roughgarden et al. [47] as an important open question. Prior to our result, the only such revenue guarantees are due to Daskalakis et al. [30] for bidders who have additive valuations over independent items. Our result significantly extends the revenue guarantees of these non-truthful simple auctions to settings where bidders have combinatorial valuations.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions) and … In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions) and decides when to stop the process by taking the current item. The goal is to prove a “prophet inequality”: that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since nontrivial guarantees are impossible for arbitrary correlations, we consider a natural “linear” correlation structure introduced by Bateni et al. as a generalization of the common-base value model of Chawla et al. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another “augmentations” challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increases in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new (1+ o (1))-approximation ratio algorithm that is robust to augmentations.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.
We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the … We consider the prophet inequality problem for (not necessarily bipartite) matching problems with independent edge values, under both edge arrivals and vertex arrivals. We show constant-factor prophet inequalities for the case where the online algorithm has only limited access to the value distributions through samples. First, we give a $16$-approximate prophet inequality for matching in general graphs under edge arrivals that uses only a single sample from each value distribution as prior information. Then, for bipartite matching and (one-sided) vertex arrivals, we show an improved bound of $8$ that also uses just a single sample from each distribution. Finally, we show how to turn our $16$-approximate single-sample prophet inequality into a truthful single-sample mechanism for online bipartite matching with vertex arrivals.
We study the revenue guarantees and approximability of item pricing. Recent work shows that with $n$ heterogeneous items, item-pricing guarantees an $O(\log n)$ approximation to the optimal revenue achievable by … We study the revenue guarantees and approximability of item pricing. Recent work shows that with $n$ heterogeneous items, item-pricing guarantees an $O(\log n)$ approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging -- it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than $O(\sqrt{n})$. Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item ``categories'' which may be significantly fewer than $n$. We assume the items are partitioned in $k$ categories so that items within a category are totally-ordered and a buyer's value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an $O(\log k)$ approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when $k$ is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when $k=1$. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable.

References (26)

We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable … We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions. Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. … Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. The allocation and prices are then resolved for each item separately, based solely on the bids submitted on that item. We study the efficiency of Bayes-Nash equilibrium (BNE) outcomes of simultaneous first- and second-price auctions when bidders have complement-free (a.k.a. subadditive) valuations. While it is known that the social welfare of every pure Nash equilibrium (NE) constitutes a constant fraction of the optimal social welfare, a pure NE rarely exists, and moreover, the full information assumption is often unrealistic. Therefore, quantifying the welfare loss in Bayes-Nash equilibria is of particular interest. Previous work established a logarithmic bound on the ratio between the social welfare of a BNE and the expected optimal social welfare in both first-price auctions (Hassidim et al., 2011) and second-price auctions (Bhawalkar and Roughgarden, 2011), leaving a large gap between a constant and a logarithmic ratio. We introduce a new proof technique and use it to resolve both of these gaps in a unified way. Specifically, we show that the expected social welfare of any BNE is at least 1/2 of the optimal social welfare in the case of first-price auctions, and at least 1/4 in the case of second-price auctions.
We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem - a single seller aims to maximize expected revenue by allocating multiple kinds … We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem - a single seller aims to maximize expected revenue by allocating multiple kinds of resources to "unit-demand" agents with preferences drawn from a known distribution. When the agents' preferences are single-dimensional Myerson's seminal work [14] shows that randomness offers no benefit - the optimal mechanism is always deterministic. In the multi-dimensional case, where each agent's preferences are given by different values for each of the available services, Briest et al.[6] recently showed that the gap between the expected revenue obtained by an optimal randomized mechanism and an optimal deterministic mechanism can be unbounded even when a single agent is offered only 4 services. However, this large gap is attained through unnatural instances where values of the agent for different services are correlated in a specific way. We show that when the agent's values involve no correlation or a specific kind of positive correlation, the benefit of randomness is only a small constant factor (4 and 8 respectively). Our model of positively correlated values (that we call the common base value model) is a natural model for unit-demand agents and items that are substitutes. Our results extend to multiple agent settings as well.
Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined … Let $X_i \geq 0$ be independent, $i = 1, \cdots, n$, and $X^\ast_n = \max(X_1, \cdots, X_n)$. Let $t(c) (s(c))$ be the threshold stopping rule for $X_1, \cdots, X_n$, defined by $t(c) = \text{smallest} i$ for which $X_i \geq c(s(c) = \text{smallest} i$ for which $X_i > c), = n$ otherwise. Let $m$ be a median of the distribution of $X^\ast_n$. It is shown that for every $n$ and $\underline{X}$ either $EX^\ast_n \leq 2EX_{t(m)}$ or $EX^\ast_n \leq 2EX_{s(m)}$. This improves previously known results, [1], [4]. Some results for i.i.d. $X_i$ are also included.
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent … Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a "prophet" who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of $p$ matroid constraints, the prophet's reward exceeds the gambler's by a factor of at most $O(p)$, and this factor is also tight.
We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer whose valuation function for sets of items is unknown and drawn … We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer whose valuation function for sets of items is unknown and drawn from some distribution D. We show that if D is a distribution over subadditive valuations with independent items, then the better of pricing each item separately or pricing only the grand bundle achieves a constant-factor approximation to the revenue of the optimal mechanism. This includes buyers who are k-demand, additive up to a matroid constraint, or additive up to constraints of any downwards-closed set system (and whose values for the individual items are sampled independently), as well as buyers who are fractionally subadditive with item multipliers drawn independently. Our proof makes use of the core-tail decomposition framework developed in prior work showing similar results for the significantly simpler class of additive buyers [Li and Yao 2013; Babaioff et al.2014].
Algorithmic pricing is the computational problem that sellers (e.g.,in supermarkets) face when trying to set prices for their items to maximize their profit in the presence of a known demand. … Algorithmic pricing is the computational problem that sellers (e.g.,in supermarkets) face when trying to set prices for their items to maximize their profit in the presence of a known demand. Guruswami etal. (SODA, 2005) proposed this problem and gave logarithmic approximations (in the number of consumers) for the unit-demand and single-parameter cases where there is a specific set of consumers and their valuations for bundles are known precisely. Subsequently several versions of the problem have been shown to have poly-logarithmic in approximability. This problem has direct ties to the important open question of better understanding the Bayesian optimal mechanism in multi-parameter agent settings; however, for this purpose approximation factors logarithmic in the number of agents are inadequate. It is therefore of vital interest to consider special cases where constant approximations are possible. We consider the unit-demand variant of this pricing problem. Here a consumer has a valuation for each different item and their value for aset of items is simply the maximum value they have for any item in the set. Instead of considering a set of consumers with precisely known preferences, like the prior algorithmic pricing literature, we assume that the preferences of the consumers are drawn from a distribution. This is the standard assumption in economics; furthermore, the setting of a specific set of customers with specific preferences, which is employed in all of the prior work in algorithmic pricing, is a special case of this general Bayesian pricing problem, where there is a discrete Bayesian distribution for preferences specified by picking one consumer uniformly from the given set of consumers. Notice that the distribution over the valuations for the individual items that this generates is obviously correlated. Our work complements these existing works by considering the case where the consumer's valuations for the different items are independent random variables. Our main result is a constant approximation algorithm for this problem that makes use of an interesting connection between this problem and the concept of virtual valuations from the single-parameter Bayesian optimal mechanism design literature.
We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related … We initiate the study of efficient mechanism design with guaranteed good properties even when players participate in multiple mechanisms simultaneously or sequentially. We define the class of smooth mechanisms, related to smooth games defined by Roughgarden, that can be thought of as mechanisms that generate approximately market clearing prices. We show that smooth mechanisms result in high quality outcome both in equilibrium and in learning outcomes in the full information setting, as well as in Bayesian equilibrium with uncertainty about participants. Our main result is to show that smooth mechanisms compose well: smoothness locally at each mechanism implies global efficiency.
We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that … We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of O(log^2 m) [STOC'06], where m is the number of items. This was subsequently improved to O( log m log log m) [Dobzinski, APPROX'07] and then to O(m) [Krysta and Vocking, ICALP'12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of O( m). Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.
We consider the problem of maximizing revenue for a monopolist offering multiple items to multiple heterogeneous buyers. We develop a simple mechanism that obtains a constant factor approximation under the … We consider the problem of maximizing revenue for a monopolist offering multiple items to multiple heterogeneous buyers. We develop a simple mechanism that obtains a constant factor approximation under the assumption that the buyers' values are additive subject to a matroid feasibility constraint and independent across items. Importantly, different buyers in our setting can have different constraints on the sets of items they desire. Our mechanism is a sequential variant of two-part tariffs. Prior to our work, simple approximation mechanisms for such multi-buyer problems were known only for the special cases of all unit-demand or all additive value buyers.
We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both … We study generalizations of the ``Prophet Inequality'' and ``Secretary Problem'', where the algorithm is restricted to an arbitrary downward-closed set system. For 0,1 values, we give O(n)-competitive algorithms for both problems. This is close to the Omega(n/log n) lower bound due to Babaioff, Immorlica, and Kleinberg. For general values, our results translate to O(log(n) log(r))-competitive algorithms, where r is the cardinality of the largest feasible set. This resolves (up to the O(loglog(n) log(r)) factor) an open question posed to us by Bobby Kleinberg.
We provide a unified view of many recent developments in Bayesian mechanism design, including the black-box reductions of Cai et. al., simple auctions for additive buyers, and posted-price mechanisms for … We provide a unified view of many recent developments in Bayesian mechanism design, including the black-box reductions of Cai et. al., simple auctions for additive buyers, and posted-price mechanisms for unit-demand buyers. Additionally, we show that viewing these three previously disjoint lines of work through the same lens leads to new developments as well. First, we provide a duality framework for Bayesian mechanism design, which naturally accommodates multiple agents and arbitrary objectives/feasibility constraints. Using this, we prove that either a posted-price mechanism or the VCG auction with per-bidder entry fees achieves a constant-factor of the optimal Bayesian IC revenue whenever buyers are unit-demand or additive, unifying previous breakthroughs of Chawla et. al. and Yao, and improving both approximation ratios (from 33.75 to 24 and 69 to 8). Finally, we show that this view also leads to improved structural characterizations in the Cai et. al. framework.
We provide simple and approximately revenue-optimal mechanisms in the multi-item multi-bidder settings. We unify and improve all previous results, as well as generalize the results to broader cases. In particular, … We provide simple and approximately revenue-optimal mechanisms in the multi-item multi-bidder settings. We unify and improve all previous results, as well as generalize the results to broader cases. In particular, we prove that the better of the following two simple, deterministic and Dominant Strategy Incentive Compatible mechanisms, a sequential posted price mechanism or an anonymous sequential posted price mechanism with entry fee, achieves a constant fraction of the optimal revenue among all randomized, Bayesian Incentive Compatible mechanisms, when buyers' valuations are XOS over independent items. If the buyers' valuations are subadditive over independent items, the approximation factor degrades to O(logm), where m is the number of items. We obtain our results by first extending the Cai-Devanur-Weinberg duality framework to derive an effective benchmark of the optimal revenue for subadditive bidders, and then analyzing this upper bound with new techniques.
We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of … We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston [23] and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths.Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms.For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality.
We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer hasa value for each item drawn independently according to(non-identical) distributions, and his value for a … We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer hasa value for each item drawn independently according to(non-identical) distributions, and his value for a set ofitems is additive. The seller aims to maximize his revenue.It is known that an optimal mechanism in this setting maybe quite complex, requiring randomization [19] and menusof infinite size [15]. Hart and Nisan [17] have initiated astudy of two very simple pricing schemes for this setting:item pricing, in which each item is priced at its monopolyreserve; and bundle pricing, in which the entire set ofitems is priced and sold as one bundle. Hart and Nisan [17]have shown that neither scheme can guarantee more thana vanishingly small fraction of the optimal revenue. Insharp contrast, we show that for any distributions, thebetter of item and bundle pricing is a constant-factorapproximation to the optimal revenue. We further discussextensions to multiple buyers and to valuations that arecorrelated across items.
We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For … We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For a monotone subadditive objective function over an arbitrary downward- closed feasibility constraint, we give an O(log n log2 r)- competitive algorithm (where r is the cardinality of the largest feasible subset).Inspired by the proof of our subadditive prophet inequality, we also obtain an O(log n · log2 r)-competitive algorithm for the Secretary Problem with a monotone subadditive objective function subject to an arbitrary downward-closed feasibility constraint. Even for the special case of a cardinality feasibility constraint, our algorithm circumvents an lower bound by Bateni, Hajiaghayi, and Zadimoghaddam [10] in a restricted query model.En route to our submodular prophet inequality, we prove a technical result of independent interest: we show a variant of the Correlation Gap Lemma [14, 1] for nonmonotone submodular functions.
We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in … We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in an arbitrary order, each purchasing her favorite bundle from among the unsold items at the posted prices. These mechanisms are simple, transparent and trivially dominant strategy incentive compatible (DSIC).We show that when agent preferences are fractionally subadditive (which includes all submodular functions), there always exist prices that, in expectation, obtain at least half of the optimal welfare. Our result is constructive: given black-box access to a combinatorial auction algorithm A, sample access to the prior distribution, and appropriate query access to the sampled valuations, one can compute, in polytime, prices that guarantee at least half of the expected welfare of A. As a corollary, we obtain the first polytime (in n and m) constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions, given access to demand query oracles. Our results also extend to valuations with complements, where the approximation factor degrades linearly with the level of complementarity.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)An n-to-1 Bidder Reduction for Multi-item Auctions and its ApplicationsAndrew Chi-Chih YaoAndrew Chi-Chih Yaopp.92 … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)An n-to-1 Bidder Reduction for Multi-item Auctions and its ApplicationsAndrew Chi-Chih YaoAndrew Chi-Chih Yaopp.92 - 109Chapter DOI:https://doi.org/10.1137/1.9781611973730.8PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract In this paper, we introduce a novel approach for reducing the k-item n-bidder auction with additive valuation to k-item 1-bidder auctions. This approach, called the Best-Guess reduction, can be applied to address several central questions in optimal revenue auction theory such as the relative strength of simple versus complex mechanisms, the power of randomization, and Bayesian versus dominant-strategy implementations. First, when the items have independent valuation distributions, we present a deterministic mechanism called Deterministic Best-Guess that yields at least a constant fraction of the optimal revenue by any randomized mechanism. This also gives the first simple mechanism that achieves constant fraction optimal revenue for such multi-buyer multi-item auctions. Second, if all the nk valuation random variables are independent, the optimal revenue achievable in dominant strategy incentive compatibility (DSIC) is shown to be at least a constant fraction of that achievable in Bayesian incentive compatibility (BIC). Third, when all the nk values are identically distributed according to a common one-dimensional distribution F, the optimal revenue is shown to be expressible in the closed form Θ(k(r+ ∫mr0 (1 – F(x)n)dx)) where r = supx≥0 x(1 – F(x)n) and m = [k/n]; this revenue is achievable by a simple mechanism called 2nd-Price Bundling. All our results apply to arbitrary distributions, regular or irregular. Previous chapter Next chapter RelatedDetails Published:2015ISBN:978-1-61197-374-7eISBN:978-1-61197-373-0 https://doi.org/10.1137/1.9781611973730Book Series Name:ProceedingsBook Code:PRDA15Book Pages:viii + 2048
We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer whose valuation function for sets of items is unknown and drawn … We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer whose valuation function for sets of items is unknown and drawn from some distribution D . We show that if D is a distribution over subadditive valuations with independent items, then the better of pricing each item separately or pricing only the grand bundle achieves a constant-factor approximation to the revenue of the optimal mechanism. This includes buyers who are k -demand, additive up to a matroid constraint, or additive up to constraints of any downward-closed set system (and whose values for the individual items are sampled independently), as well as buyers who are fractionally subadditive with item multipliers drawn independently. Our proof makes use of the core-tail decomposition framework developed in prior work showing similar results for the significantly simpler class of additive buyers. In the second part of the article, we develop a connection between approximately optimal simple mechanisms and approximate revenue monotonicity with respect to buyers’ valuations. Revenue non-monotonicity is the phenomenon that sometimes strictly increasing buyers’ values for every set can strictly decrease the revenue of the optimal mechanism. Using our main result, we derive a bound on how bad this degradation can be (and dub such a bound a proof of approximate revenue monotonicity); we further show that better bounds on approximate monotonicity imply a better analysis of our simple mechanisms.
We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of … We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers’ values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston [23] and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths.Because buyers’ preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms.For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality.
We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our … We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call online contention resolution schemes (OCRSs), is applicable to many online selection problems, including Bayesian online selection, oblivious posted pricing mechanisms, and stochastic probing models. It allows for handling a wide set of constraints, and shares many strong properties of offline contention resolution schemes. In particular, OCRSs for different constraint families can be combined to obtain an OCRS for their intersection. Moreover, we can approximately maximize submodular functions in the online settings we consider.We, thus, get a broadly applicable framework for several online selection problems, which improves on previous approaches in terms of the types of constraints that can be handled, the objective functions that can be dealt with, and the assumptions on the strength of the adversary. Furthermore, we resolve two open problems from the literature; namely, we present the first constant-factor constrained oblivious posted price mechanism for matroid constraints, and the first constant-factor algorithm for weighted stochastic probing with deadlines.
The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items … The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg [33] and Feldman et al. [17] show that for adversarial arrival order of random variables the optimal prophet inequalities give a 1/2-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the 1/2-approximation and obtain (1 – 1/e)-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan [45] and Esfandiari et al. [15] who worked in the special cases where we can fully control the arrival order or when there is only a single item.Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.
A longstanding open problem in Algorithmic Mechanism Design is to design computationally-efficient truthful mechanisms for (approximately) maximizing welfare in combinatorial auctions with submodular bidders. The first such mechanism was obtained … A longstanding open problem in Algorithmic Mechanism Design is to design computationally-efficient truthful mechanisms for (approximately) maximizing welfare in combinatorial auctions with submodular bidders. The first such mechanism was obtained by Dobzinski, Nisan, and Schapira [STOC'06] who gave an O(log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> m)-approximation where m is number of items. This problem has been studied extensively since, culminating in an O(√log m)-approximation mechanism by Dobzinski [STOC'16]. We present a computationally-efficient truthful mechanism with approximation ratio that improves upon the state-of-the-art by an exponential factor. In particular, our mechanism achieves an O((log log m) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> )-approximation in expectation, uses only O(n) demand queries, and has universal truthfulness whether Θ(√log m) is the best approximation ratio in this guarantee. This settles an open question of Dobzinski on setting in negative.
We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold … We present a general framework for stochastic online maximization problems with combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing price-based online approximation algorithms, a natural extension of threshold algorithms for settings beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient conditions on prices when all weights are known in advance, then prove that the resulting approximation guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of the existing literature on prophet inequalities and posted price mechanisms and is used to derive new and improved results for combinatorial markets (with and without complements), multidimensional matroids, and sparse packing problems. Finally, we highlight a surprising connection between the smoothness framework for bounding the price of anarchy of mechanisms and our framework, and show that many smooth mechanisms can be recast as posted price mechanisms with comparable performance guarantees.