Normal fluctuation in quantum ergodicity for Wigner matrices

Type: Article

Publication Date: 2022-04-28

Citations: 15

DOI: https://doi.org/10.1214/21-aop1552

Abstract

We consider the quadratic form of a general high-rank deterministic matrix on the eigenvectors of an N×N Wigner matrix and prove that it has Gaussian fluctuation for each bulk eigenvector in the large N limit. The proof is a combination of the energy method for the Dyson Brownian motion inspired by Marcinek and Yau (2021) and our recent multiresolvent local laws (Comm. Math. Phys. 388 (2021) 1005–1048).

Locations

  • The Annals of Probability - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Normal fluctuation in quantum ergodicity for Wigner matrices 2021 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Functional Central Limit Theorems for Wigner Matrices 2020 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Fluctuations in the spectrum of non-Hermitian i.i.d. matrices 2022 Giorgio Cipolloni
+ PDF Chat Fluctuation Moments for Regular Functions of Wigner Matrices 2024 Jana Reker
+ PDF Chat Functional central limit theorems for Wigner matrices 2023 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Multi-Point Functional Central Limit Theorem for Wigner Matrices 2023 Jana Reker
+ Exponential growth of random determinants beyond invariance 2021 Gérard Ben Arous
Paul Bourgade
Benjamin McKenna
+ PDF Chat Rank-uniform local law for Wigner matrices 2022 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ PDF Chat On the Spectral Form Factor for Random Matrices 2023 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ On the Spectral Form Factor for Random Matrices 2021 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ Exponential growth of random determinants beyond invariance 2021 Gérard Ben Arous
Paul Bourgade
Benjamin McKenna
+ PDF Chat Eigenvalue fluctuations of 1-dimensional random Schrödinger operators 2024 Takuto Mashiko
Yuma Marui
Naoki Maruyama
Fumihiko Nakano
+ Eigenstate thermalisation at the edge for Wigner matrices 2023 Giorgio Cipolloni
László Erdős
Joscha Henheik
+ Fluctuation Moments for Regular Functions of Wigner Matrices 2023 Jana Reker
+ PDF Chat Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices 2020 Lucas Benigni
+ Rank-uniform local law for Wigner matrices 2022 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ PDF Chat Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices 2021 Yiting Li
Kevin Schnelli
Yuanyuan Xu
+ PDF Chat Eigenstate Thermalization Hypothesis for Wigner Matrices 2021 Giorgio Cipolloni
László Erdős
Dominik Schröder
+ PDF Chat Fluctuations in Local Quantum Unique Ergodicity for Generalized Wigner Matrices 2022 Lucas Benigni
Patrick Lopatto
+ Eigenstate Thermalization Hypothesis for Generalized Wigner Matrices 2023 Arka Adhikari
Sofiia Dubova
Changji Xu
Jun Yin