Random tree Besov priors – Towards fractal imaging

Type: Article

Publication Date: 2022-11-16

Citations: 2

DOI: https://doi.org/10.3934/ipi.2022059

Abstract

We propose alternatives to Bayesian prior distributions that are frequently used in the study of inverse problems. Our aim is to construct priors that have similar good edge-preserving properties as total variation or Mumford-Shah priors but correspond to well-defined infinite-dimensional random variables, and can be approximated by finite-dimensional random variables. We introduce a new wavelet-based model, where the non-zero coefficients are chosen in a systematic way so that prior draws have certain fractal behaviour. We show that realisations of this new prior take values in Besov spaces and have singularities only on a small set $ \tau $ with a certain Hausdorff dimension. We also introduce an efficient algorithm for calculating the MAP estimator, arising from the the new prior, in the denoising problem.

Locations

  • Inverse Problems and Imaging - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Research Repository (Delft University of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Random tree Besov priors -- Towards fractal imaging 2021 Hanne Kekkonen
Matti Lassas
Eero Saksman
Samuli Siltanen
+ Multilevel Markov Chain Monte Carlo for Bayesian Elliptic Inverse Problems with Besov Random Tree Priors 2023 Andreas Stein
Viêt Há Hoáng
+ Besov, bayes, and plato in multiscale statistical modeling 2001 Richard G. Baraniuk
+ Bayesian wavelet denoising: Besov priors and non-Gaussian noises 2001 D. Leporini
J.-C. Pesquet
+ Uncertainty Quantification for Bayesian CART 2019 Ismaël Castillo
Veronika Ročková
+ Uncertainty Quantification for Bayesian CART 2019 Ismaël Castillo
Veronika Ročková
+ PDF Chat Uncertainty quantification for Bayesian CART 2021 Ismaël Castillo
Veronika Ročková
+ Multiscale Analysis of Bayesian Cart 2019 Ismaël Castillo
Veronika Ročková
+ Besov priors for Bayesian inverse problems 2011 Masoumeh Dashti
Stephen Harris
Andrew M. Stuart
+ Besov priors for Bayesian inverse problems 2011 Masoumeh Dashti
Stephen Harris
Andrew M. Stuart
+ PDF Chat Besov-Laplace priors in density estimation: optimal posterior contraction rates and adaptation 2023 Matteo Giordano
+ Besov-Laplace priors in density estimation: optimal posterior contraction rates and adaptation 2022 Matteo Giordano
+ Spatiotemporal Besov Priors for Bayesian Inverse Problems 2023 Shiwei Lan
Mirjeta Pasha
Shuyi Li
+ PDF Chat Wavelet-Based Priors Accelerate Maximum-a-Posteriori Optimization in Bayesian Inverse Problems 2019 Philipp Wacker
Peter Knabner
+ Geometrical Priors for Noisefree Wavelet Coefficients in Image Denoising 1999 Maarten Jansen
Adhemar Bultheel
+ Besov priors for Bayesian inverse problems 2012 Masoumeh Dashti
Stephen Harris
Andrew M. Stuart
+ Bayesian wavelet denoising using Besov priors 2003 D. Leporini
Hamid Krim
+ Wavelet-based priors accelerate maximum-a-posteriori optimization in Bayesian inverse problems 2017 Philipp Wacker
Peter Knabner
+ Wavelet-based priors accelerate maximum-a-posteriori optimization in Bayesian inverse problems 2017 Philipp Wacker
Peter Knabner
+ Adaptive inference over Besov spaces in the white noise model using $p$-exponential priors 2022 Sergios Agapiou
Aimilia Savva