Tilted corners in integer grids

Type: Book-Chapter

Publication Date: 2022-04-19

Citations: 2

DOI: https://doi.org/10.1515/9783110754216-020

Abstract

It was proved by Ron Graham and the second author that for any coloring of the N × N grid using fewer than log log N colors, one can always find a monochromatic isosceles right triangle, a triangle with vertex coordinates (x, y), (x + d, y), and (x, y+d). In this paper, we are asking questions where not only axis-parallel, but tilted isosceles right triangles are considered as well. Both coloring and density variants of the problem will be discussed.

Locations

  • arXiv (Cornell University) - View - PDF
  • Zenodo (CERN European Organization for Nuclear Research) - View - PDF
  • De Gruyter eBooks - View

Similar Works

Action Title Year Authors
+ Tilted Corners in Integer Grids 2021 Ilya D. Shkredov
József Solymosi
+ Monochromatic Equilateral Right Triangles on the Integer Grid 2007 Ron Graham
József Solymosi
+ Counting the number of isosceles triangles in rectangular regular grids 2016 Chai Wah Wu
+ Counting the number of isosceles triangles in rectangular regular grids 2016 Chai Wah Wu
+ The number of $k$-dimensional corner-free subsets of grids 2020 Younjin Kim
+ PDF Chat Monochromatic Boxes in Colored Grids 2011 Joshua Cooper
Stephen A. Fenner
Semmy Purewal
+ Monochromatic empty triangles in two-colored point sets 2011 János Pach
Gézá Tóth
+ PDF Chat The Number of $k$-Dimensional Corner-Free Subsets of Grids 2022 Younjin Kim
+ Erratum: Billiards in nearly isosceles triangles 2014 W. Patrick Hooper
Richard Evan Schwartz
+ Plattenbauten: Touching Rectangles in Space 2020 Stefan Felsner
Kolja Knauer
Torsten Ueckerdt
+ Lattice points in a right-angled triangle-II 1943 S. S. Pillai
+ Minimum area isosceles containers 2020 Gergely Kiss
János Pach
Gábor Somlai
+ Minimum area isosceles containers 2020 Gergely Kiss
János Pach
Gábor Somlai
+ Almost Congruent Triangles 2023 József Balogh
Felix Christian Clemen
Adrian Dumitrescu
+ PDF Chat Ramsey Theory on the Integer Grid: The "L" Problem 2025 Isaac Mammel
William L. Smith
Carl Yerger
+ Cutting corners 2022 Andrey Kupavskii
Арсений Сагдеев
Dmitrii Zakharov
+ PDF Chat Minimum Area Isosceles Containers 2020 Gergely Kiss
János Pach
Gábor Somlai
+ No-Three-in-a-$Θ:$ Variations on the No-Three-in-a-Line Problem 2023 Natalie Dodson
Anant P. Godbole
Dashleen Gonzalez
Ryan S. Lynch
Lani Southern
+ Rectangle Free Coloring of Grids 2010 Stephen A. Fenner
William Gasarch
Charles J. Glover
Semmy Purewal
+ Plattenbauten: Touching Rectangles in Space 2020 Stefan Felsner
Kolja Knauer
Torsten Ueckerdt