Gaussian Primes in Narrow Sectors

Type: Article

Publication Date: 2021-01-28

Citations: 1

DOI: https://doi.org/10.1093/qmath/haab009

Abstract

Abstract We generalize a Theorem of Ricci and count Gaussian primes $\mathfrak{p}$ with short interval restrictions on both the norm and the argument of $\mathfrak{p}$. We follow Heath-Brown’s method for counting rational primes in short intervals.

Locations

  • arXiv (Cornell University) - View - PDF
  • The Quarterly Journal of Mathematics - View

Similar Works

Action Title Year Authors
+ Gaussian Primes in Narrow Sectors 2020 Joshua Stucky
+ Gaussian Primes in Narrow Sectors 2020 Joshua Stucky
+ Gaussian almost primes in almost all narrow sectors 2023 Olli Järviniemi
Joni Teräväinen
+ Gaussian almost primes in almost all narrow sectors 2023 Olli Järviniemi
Joni Teräväinen
+ PDF Chat A Bombieri-Vinogradov Theorem for primes in short intervals and small sectors 2021 Tanmay Khale
Cooper O'Kuhn
Apoorva Panidapu
Alec Sun
Shengtong Zhang
+ PDF Chat Gaussian primes in almost all narrow sectors 2020 Bingrong Huang
Jianya Liu
Zeév Rudnick
+ Gaussian primes in almost all narrow sectors 2019 Bingrong Huang
Jianya Liu
Zeév Rudnick
+ The prime geodesic theorem in square mean 2018 Antal Balog
András Bíró
Gergely Harcos
Péter Maga
+ The prime geodesic theorem in square mean 2018 Antal Balog
András Bíró
Gergely Harcos
Péter Maga
+ The prime geodesic theorem in square mean 2018 Antal Balog
András Bíró
Gergely Harcos
Péter Maga
+ Averages over the Gaussian Primes: Goldbach's Conjecture and Improving Estimates 2023 Christina Giannitsi
Ben Krause
Michael T. Lacey
Hamed Mousavi
Yaghoub Rahimi
+ Gaussian primes in narrow sectors 2001 Glyn Harman
Philip Lewis
+ PDF Chat Bykovskii-Type Theorem for the Picard Manifold 2020 Antal Balog
András Bíró
Giacomo Cherubini
Niko Laaksonen
+ PDF Chat The error in the prime number theorem in short intervals 2024 Ethan Simpson Lee
+ Bykovskii-type theorem for the Picard manifold 2019 Antal Balog
András Bíró
Giacomo Cherubini
Niko Laaksonen
+ Bykovskii-type theorem for the Picard manifold 2019 Antal Balog
András Bíró
Giacomo Cherubini
Niko Laaksonen
+ PDF Chat Discorrelation Between Primes in Short Intervals and Polynomial Phases 2019 Kaisa Matomäki
Xuancheng Shao
+ On primes, almost primes, and the Möbius function in short intervals 2023 Kaisa Matomäki
+ PDF Chat A NOTE ON PRIMES IN SHORT INTERVALS 2006 Tsz Ho Chan
+ A Conditional Explicit Result for the Prime Number Theorem in Short Intervals 2019 Adrian Dudek

Works That Cite This (1)

Action Title Year Authors
+ Gaussian almost primes in almost all narrow sectors 2023 Olli Järviniemi
Joni Teräväinen