Correlations of almost primes

Type: Article

Publication Date: 2022-06-09

Citations: 0

DOI: https://doi.org/10.1017/s0305004122000251

Abstract

Abstract We prove that analogues of the Hardy–Littlewood generalised twin prime conjecture for almost primes hold on average. Our main theorem establishes an asymptotic formula for the number of integers $n=p_1p_2 \leq X$ such that $n+h$ is a product of exactly two primes which holds for almost all $|h|\leq H$ with $\log^{19+\varepsilon}X\leq H\leq X^{1-\varepsilon}$ , under a restriction on the size of one of the prime factors of n and $n+h$ . Additionally, we consider correlations $n,n+h$ where n is a prime and $n+h$ has exactly two prime factors, establishing an asymptotic formula which holds for almost all $|h| \leq H$ with $X^{1/6+\varepsilon}\leq H\leq X^{1-\varepsilon}$ .

Locations

  • Mathematical Proceedings of the Cambridge Philosophical Society - View - PDF
  • Research Portal (King's College London) - View - PDF

Similar Works

Action Title Year Authors
+ Correlations of Almost Primes 2021 Natalie Evans
+ A Proof of the Twin Prime Conjecture 2019 Theophilus Agama
+ A proof of the twin prime conjecture 2017 Theophilus Agama
+ A proof of the twin prime conjecture 2017 Theophilus Agama
+ Counting primes revisited 2016 Alejandro Miralles
Damià Torres
+ Consecutive primes and Beatty sequences 2016 William D. Banks
Victor Zhenyu Guo
+ Consecutive primes and Beatty sequences 2016 William D. Banks
Victor Zhenyu Guo
+ Prime Difference Champions 2016 S. Funkhouser
D. A. Goldston
D. Sengupta
J. Sengupta
+ Counting primes by frequencies 2016 Alejandro Miralles
Damià Torres
+ PDF Chat Prime Difference Champions 2020 Scott Funkhouser
D. A. Goldston
Dipendra C. Sengupta
Jharna D. Sengupta
+ PDF Chat Asymptotic independence of $\Omega(n)$ and $\Omega(n+1)$ along logarithmic averages 2024 Dimitrios Charamaras
Florian K. Richter
+ Investigating the Subadditivity of the Prime Counting Function π(z) and Its Implications for the Second Hardy–Littlewood Conjecture 2024 Anshuman Padhi
+ Composite values of shifted exponentials 2020 Olli Järviniemi
Joni Teräväinen
+ PDF Chat The behaviour in short intervals of exponential sums over sifted integers 2009 Helmut Maier
A. Sankaranarayanan
+ Twin prime analog over large finite fields 2012 Lior Bary‐Soroker
+ Averaged Form of the Hardy-Littlewood Conjecture 2016 Jori Merikoski
+ A probabilistic approach to the twin prime and cousin prime conjectures 2023 Daniele Bufalo
Michele Bufalo
Felice Iavernaro
+ Almost primes of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si8.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>⌊</mml:mo><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msup><mml:mo>⌋</mml:mo></mml:mrow></mml:math> 2015 William D. Banks
Victor Z. Guo
Igor E. Shparlinski
+ PDF Chat BIG BIASES AMONGST PRODUCTS OF TWO PRIMES 2016 David S. Dummit
Andrew Granville
Hershy Kisilevsky
+ Almost primes in almost all short intervals II 2022 Kaisa Matomäki
Joni Teräväinen

Works That Cite This (0)

Action Title Year Authors