Well-posedness theory for nonlinear scalar conservation laws on networks

Type: Article

Publication Date: 2021-12-28

Citations: 14

DOI: https://doi.org/10.3934/nhm.2021025

Locations

  • Networks and Heterogeneous Media - View
  • arXiv (Cornell University) - View - PDF
  • Duo Research Archive (University of Oslo) - View - PDF

Similar Works

Action Title Year Authors
+ Well-posedness theory for nonlinear scalar conservation laws on networks 2021 Ulrik Skre Fjordholm
Markus Musch
Nils Henrik Risebro
+ PDF Chat Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network 2017 Boris Andreïanov
Giuseppe Maria Coclite
Carlotta Donadello
+ Stability of quasi-entropy solutions of non-local scalar conservation laws 2022 Elio Marconi
Emanuela Radici
Federico Stra
+ Non-existence, non-uniqueness and slow convergence in discrete conservation laws 1988 Philip L. Roe
Bram van Leer
+ PDF Chat Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit 2015 Marco Di Francesco
Massimiliano D. Rosini
+ Well-Balanced Schemes for the Initial Boundary Value Problem for 1D Scaler Conservation Laws 2006 Martin Nolte
Dietmar Kroener
+ Entropy solutions of non-local scalar conservation laws with congestion via deterministic particle method 2021 Emanuela Radici
Federico Stra
+ Non-local scalar conservation laws with discontinuous flux 2020 Felisia Angela Chiarello
Giuseppe Maria Coclite
+ On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition 2006 Raimund Bürger
Hermano Frid
Kenneth H. Karlsen
+ A Class of Nonlinear, Nonhyperbolic Systems of Conservation Laws with Well-Posed Initial Value Problems 2002 Michael Sever
+ PDF Chat Stability estimates for non-local scalar conservation laws 2018 Felisia Angela Chiarello
Paola Goatin
Elena Rossi
+ Stability estimates for non-local scalar conservation laws 2018 Felisia Angela Chiarello
Paola Goatin
Elena Rossi
+ Stability estimates for non-local scalar conservation laws 2018 Felisia Angela Chiarello
Paola Goatin
Elena Rossi
+ Numerical solutions of conservation laws 1986 Chi‐Wang Shu
+ Well-posedness of a network transport model 2024 Michiel Bertsch
Emilia Cozzolino
Veronica Tora
+ PDF Chat Non-diffusive neural network method for hyperbolic conservation laws 2024 Emmanuel Lorin
Arian Novruzi
+ Conservation laws and the numerical solution of ODEs 1986 L. F. Shampine
+ Numerics and control of conservation laws 2022 Michaël Herty
Stefan Ulbrich
+ Self-regulated biological transportation structures with general entropy dissipations, part I: the 1D case 2023 Clarissa Astuto
Jan Haškovec
Peter A. Markowich
Simone Portaro
+ PDF Chat Self-regulated biological transportation structures with general entropy dissipation: 2D case and leaf-shaped domain 2024 Clarissa Astuto
Peter A. Markowich
Simone Portaro
Giovanni Russo

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat On the Controllability of Entropy Solutions of Scalar Conservation Laws at a Junction via Lyapunov Methods 2023 Nicola De Nitti
Enrique Zuazua
+ PDF Chat Asymptotic expansion for convection-dominated transport in a thin graph-like junction 2024 Taras Mel’nyk
Christian Rohde
+ Asymptotic expansion for convection-dominated transport in a thin graph-like junction 2022 Taras Mel’nyk
Christian Rohde
+ Conservation laws and Hamilton-Jacobi equations on a junction: The convex case 2024 Pierre Cardaliaguet
Nicolas Forcadel
Théo Girard
Régis Monneau
+ Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms 2024 Dilip Sarkar
Shridhar Kumar
Pratibhamoy Das
Higinio Ramos
+ A proof of Kirchhoff's first law for hyperbolic conservation laws on networks 2023 Alexandre M. Bayen
Alexander Keimer
N. Müller
+ PDF Chat Control of hyperbolic and parabolic equations on networks and singular limits 2024 Jon Asier Bárcena‐Petisco
Márcio André Araújo Cavalcante
Giuseppe Maria Coclite
Nicola De Nitti
Enrique Zuazua
+ A class of germs arising from homogenization in traffic flow on junctions 2023 Pierre Cardaliaguet
Nicolas Forcadel
Régis Monneau
+ PDF Chat A class of germs arising from homogenization in traffic flow on junctions 2024 Pierre Cardaliaguet
Nicolas Forcadel
Régis Monneau
+ PDF Chat Microscopic Derivation of a Traffic Flow Model with a Bifurcation 2024 Pierre Cardaliaguet
Nicolas Forcadel