F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking

Type: Article

Publication Date: 2020-10-24

Citations: 22

DOI: https://doi.org/10.1109/iros45743.2020.9341120

Abstract

This paper presents F-Siamese Tracker, a novel approach for single object tracking prominently characterized by more robustly integrating 2D and 3D information to reduce redundant search space. A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates. Instead of solely relying on 3D proposals, firstly, our method leverages the Siamese network applied on RGB images to produce 2D region proposals which are then extruded into 3D viewing frustums. Besides, we perform an on-line accuracy validation on the 3D frustum to generate refined point cloud searching space, which can be embedded directly into the existing 3D tracking backbone. For efficiency, our approach gains better performance with fewer candidates by reducing search space. In addition, benefited from introducing the online accuracy validation, for occasional cases with strong occlusions or very sparse points, our approach can still achieve high precision, even when the 2D Siamese tracker loses the target. This approach allows us to set a new state-of-the-art in 3D single object tracking by a significant margin on a sparse outdoor dataset (KITTI tracking). Moreover, experiments on 2D single object tracking show that our framework boosts 2D tracking performance as well.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - View

Similar Works

Action Title Year Authors
+ F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking 2020 Hao Zou
Jinhao Cui
Xin Kong
Chujuan Zhang
Yong Liu
Feng Wen
Wanlong Li
+ PDF Chat SiamMo: Siamese Motion-Centric 3D Object Tracking 2024 Yuxiang Yang
Yingqi Deng
Jing Zhang
Hongjie Gu
Zhekang Dong
+ OSP2B: One-Stage Point-to-Box Network for 3D Siamese Tracking 2023 Jiahao Nie
Zhiwei He
Yuxiang Yang
Zhengyi Bao
Mingyu Gao
Jing Zhang
+ OSP2B: One-Stage Point-to-Box Network for 3D Siamese Tracking 2023 Jiahao Nie
Zhiwei He
Yuxiang Yang
Zhengyi Bao
Mingyu Gao
Jing Zhang
+ Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds 2022 Chaoda Zheng
Yan Xu
Haiming Zhang
Baoyuan Wang
Shenghui Cheng
Shuguang Cui
Zhen Li
+ GLT-T++: Global-Local Transformer for 3D Siamese Tracking with Ranking Loss 2023 Jiahao Nie
Zhiwei He
Yuxiang Yang
Xudong Lv
Mingyu Gao
Jing Zhang
+ PDF Chat EasyTrack: Efficient and Compact One-stream 3D Point Clouds Tracker 2024 Baojie Fan
Wuyang Zhou
Kai Wang
Shijun Zhou
Fengyu Xu
Jiandong Tian
+ Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2018 Heng Fan
Haibin Ling
+ PDF Chat Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2019 Heng Fan
Haibin Ling
+ PDF Chat STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking 2023 Yubo Cui
Zhiheng Li
Zheng Fang
+ PDF Chat GSOT3D: Towards Generic 3D Single Object Tracking in the Wild 2024 Yifan Jiao
Yunhao Li
Junhua Ding
Qing Yang
Fu Song
Heng Fan
Libo Zhang
+ STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking 2023 Yubo Cui
Zhiheng Li
Zheng Fang
+ PDF Chat 3D Siamese Transformer Network for Single Object Tracking on Point Clouds 2022 Le Hui
Lingpeng Wang
Linghua Tang
Kaihao Lan
Jin Xie
Jian Yang
+ VPIT: Real-time Embedded Single Object 3D Tracking Using Voxel Pseudo Images 2022 Illia Oleksiienko
Paraskevi Nousi
Nikolaos Passalis
Anastasios Tefas
Alexandros Iosifidis
+ 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds 2021 Le Hui
Lingpeng Wang
Mingmei Cheng
Jin Xie
Jian Yang
+ PDF Chat 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds 2021 Le Hui
Lingpeng Wang
Mingmei Cheng
Jin Xie
Jian Yang
+ 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds 2021 Le Hui
Lingpeng Wang
Mingmei Cheng
Jin Xie
Jian Yang
+ PDF Chat 3D-SiamRPN: An End-to-End Learning Method for Real-Time 3D Single Object Tracking Using Raw Point Cloud 2020 Zheng Fang
Sifan Zhou
Yubo Cui
Sebastian Scherer
+ A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds 2022 Yan Xia
Qiangqiang Wu
Tianyu Yang
Wei Li
Antoni B. Chan
Uwe Stilla
+ 3D Siamese Transformer Network for Single Object Tracking on Point Clouds 2022 Le Hui
Lingpeng Wang
Ling‐Hua Tang
Kaihao Lan
Jin Xie
Jian Yang

Works Cited by This (17)

Action Title Year Authors
+ PDF Chat Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 2014 Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+ PDF Chat High-Speed Tracking with Kernelized Correlation Filters 2014 João F. Henriques
Rui Caseiro
Pedro Martins
Jorge Batista
+ PDF Chat A Novel Performance Evaluation Methodology for Single-Target Trackers 2016 Matej Kristan
Jiřı́ Matas
Aleš Leonardis
Tomáš Vojíř
Roman Pflugfelder
Gustavo J. Fernández
Georg Nebehay
Fatih Porikli
Luka Čehovin Zajc
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Fully-Convolutional Siamese Networks for Object Tracking 2016 Luca Bertinetto
Jack Valmadre
João F. Henriques
Andrea Vedaldi
Philip H. S. Torr
+ PDF Chat Discriminative Scale Space Tracking 2016 Martin Danelljan
G Hager
Fahad Shahbaz Khan
Michael Felsberg
+ PDF Chat ECO: Efficient Convolution Operators for Tracking 2017 Martin Danelljan
Goutam Bhat
Fahad Shahbaz Khan
Michael Felsberg
+ PDF Chat LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking 2019 Heng Fan
Liting Lin
Fan Yang
Peng Chu
Ge Deng
Sijia Yu
Hexin Bai
Yong Xu
Chunyuan Liao
Haibin Ling
+ Fast Online Object Tracking and Segmentation: A Unifying Approach 2018 Qiang Wang
Li Zhang
Luca Bertinetto
Weiming Hu
Philip H. S. Torr