Uniqueness of compact ancient solutions to the higher-dimensional Ricci flow

Type: Article

Publication Date: 2022-11-22

Citations: 10

DOI: https://doi.org/10.1515/crelle-2022-0075

Abstract

Abstract In dimensions <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>4</m:mn> </m:mrow> </m:math> {n\geq 4} , an ancient κ-solution is a nonflat, complete, ancient solution of the Ricci flow that is uniformly PIC and weakly PIC2; has bounded curvature; and is κ-noncollapsed. In this paper, we study the classification of ancient κ-solutions to n -dimensional Ricci flow on <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>S</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> {S^{n}} , extending the result in [S. Brendle, P. Daskalopoulos and N. Sesum, Uniqueness of compact ancient solutions to three-dimensional Ricci flow, Invent. Math. 226 2021, 2, 579–651] to higher dimensions. We prove that such a solution is either isometric to a family of shrinking round spheres, or the Type II ancient solution constructed by Perelman.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ PDF Chat Uniqueness of compact ancient solutions to the higher dimensional Ricci flow 2021 Simon Brendle
Panagiota Daskalopoulos
Keaton Naff
Nataša Šešum
+ Uniqueness of compact ancient solutions to the higher dimensional Ricci flow 2021 Simon Brendle
Panagiota Daskalopoulos
Keaton Naff
Nataša Šešum
+ PDF Chat Uniqueness of compact ancient solutions to three-dimensional Ricci flow 2021 Simon Brendle
Panagiota Daskalopoulos
Nataša Šešum
+ Uniqueness of compact ancient solutions to three-dimensional Ricci flow 2020 Simon Brendle
Panagiota Daskalopoulos
Nataša Šešum
+ PDF Chat Unique Asymptotics of Compact Ancient Solutions to <scp>Three‐Dimensional</scp> Ricci Flow 2020 Sigurd Angenent
Simon Brendle
Panagiota Daskalopoulos
Nataša Šešum
+ Unique Asymptotics of Compact Ancient Solutions to three-dimensional Ricci flow 2019 Sigurd Angenent
Simon Brendle
Panagiota Daskalopoulos
Nataša Šešum
+ Unique Asymptotics of Compact Ancient Solutions to three-dimensional Ricci flow 2019 Sigurd Angenent
Simon Brendle
Panagiota Daskalopoulos
Nataša Šešum
+ Uniqueness of ancient compact non-collapsed solutions to the 3-dimensional Ricci flow 2019 Panagiota Daskalopoulos
Nataša Šešum
+ Uniqueness of ancient compact non-collapsed solutions to the 3-dimensional Ricci flow 2019 Panagiota Daskalopoulos
Nataša Šešum
+ PDF Chat Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions 2023 Simon Brendle
Keaton Naff
+ PDF Chat Pinched ancient solutions to the high codimension mean curvature flow 2021 Stephen Lynch
Huy The Nguyen
+ Ancient solutions to the Ricci flow with isotropic curvature conditions 2020 Jae Ho Cho
Yu Li
+ Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions 2020 Simon Brendle
Keaton Naff
+ PDF Chat Ancient solutions to the Ricci flow with pinched curvature 2011 Simon Brendle
Gerhard Huisken
Carlo Sinestrari
+ PDF Chat Ancient Solutions of Ricci Flow with Type I Curvature Growth 2024 Stephen Lynch
Andoni Royo Abrego
+ PDF Chat Ancient solutions to the Ricci flow with isotropic curvature conditions 2022 Jae Ho Cho
Yu Li
+ Classification of compact ancient solutions to the Ricci flow on surfaces 2009 Panagiota Daskalopoulos
Richard S. Hamilton
Nataša Šešum
+ Classification of compact ancient solutions to the Ricci flow on surfaces 2009 Panagiota Daskalopoulos
Richard Hamilton
Nataša Šešum
+ Collapsing ancient solutions of mean curvature flow 2021 Theodora Bourni
Mat Langford
Giuseppe Tinaglia
+ PDF Chat Classification of ancient compact solutions to the Ricci flow on surfaces 2012 Panagiota Daskalopoulos
Richard S. Hamilton
Nataša Šešum