Reply to “Comment on ‘Inverse Square Lévy Walks are not Optimal Search Strategies for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> ”’

Type: Letter

Publication Date: 2021-01-28

Citations: 19

DOI: https://doi.org/10.1103/physrevlett.126.048902

Abstract

We refute here the concernes raised in the Comment of our letter. This reply states clearly the validity range of our results and shows that the optimality of inverse-square Levy walks at the basis of the Levy flight foraging hypothesis is generically unfounded. We also give the precise set of conditions for which inverse-levy square Levy walks turn to be optimal, conditions which are unlikely to be verified biologically.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • Radboud Repository (Radboud University) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Comment on “Inverse Square Lévy Walks are not Optimal Search Strategies for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> ” 2021 Sergey V. Buldyrev
Ernesto P. Raposo
Frederic Bartumeus
Shlomo Havlin
Flávio Roberto Rusch
M. G. E. da Luz
G. M. Viswanathan
+ PDF Chat Inverse Square Lévy Walks are not Optimal Search Strategies for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> 2020 Nicolas Levernier
Johannes Textor
O. Bénichou
Raphaël Voituriez
+ PDF Chat Random walk model that universally generates inverse square L\'evy walk by eliminating search cost minimization constraint 2024 Shuji Shinohara
Daiki Morita
Hayato Hirai
Ryosuke Kuribayashi
Nobuhito Manome
Toru Moriyama
Hiroshi Okamoto
Yoshihiro Nakajima
Pegio-Yukio Gunji
Ung‐il Chung
+ PDF Chat On the Mean Square Displacement in Lévy Walks 2020 Christoph Börgers
Claude Greengard
+ Inverse square Levy walk emerging universally in goal-oriented tasks 2023 Shuji Shinohara
Daiki Morita
Nobuhito Manome
Ryota Hayashi
Toru Moriyama
Hiroshi Okamoto
Pegio-Yukio Gunji
Ung‐il Chung
+ Lévy flights and Lévy walks revisited 2007 G. Zumofen
J. Klafter
Michael F. Shlesinger
+ PDF Chat Lévy walks 2015 Vasily Zaburdaev
S. I. Denisov
J. Klafter
+ A recipe for an optimal power law tailed walk 2021 Tomoko Sakiyama
+ Preface – Special issue: Random dynamics 2022 Hongjun Gao
Björn Schmalfuß
Wei Wang
+ Erratum: Stochastic theory of gravitational relaxation and Lévy-fractional Klein-Kramers equation 2022 Alexander V. Milovanov
+ PDF Chat Search efficiency of discrete fractional Brownian motion in a random distribution of targets 2021 S. M. J. Khadem
Sabine H. L. Klapp
Rainer Klages
+ PDF Chat Counterexample to the Lévy flight foraging hypothesis in the narrow capture framework 2024 Justin C. Tzou
Leo Tzou
+ Weierstrassian Lévy walks are a by-product of crawling 2021 Andy M. Reynolds
+ Lévy flights in random searches 2000 G. M. Viswanathan
Vsevolod Afanasyev
Sergey V. Buldyrev
Shlomo Havlin
M. G. E. da Luz
Ernesto P. Raposo
H. Eugene Stanley
+ PDF Chat Self-Interacting Random Walks: Aging, Exploration, and First-Passage Times 2022 A. Barbier–Chebbah
O. Bénichou
Raphaël Voituriez
+ Scale-free animal movement patterns: Lévy walks outperform fractional Brownian motions and fractional Lévy motions in random search scenarios 2009 Andy M. Reynolds
+ From Brownian motion to self-avoiding walks and Lévy flights 2013 Christian von Ferber
Yurij Holovatch
I. M. Mryglod
Gleb Oshanin
+ PDF Chat Intermittent search strategies 2014 O. Bénichou
Raphaël Voituriez
+ Lévy decoupled random walks 2003 Miguel A. Ré
Carlos E. Budde
Domingo Prato
+ Geodesic Lévy flights and expected stopping time for random searches 2024 Yann Chaubet
Yannick Guedes Bonthonneau
Thibault Lefeuvre
Leo Tzou