Explicit Krein resolvent identities for singular Sturm-Liouville operators with applications to Bessel operators

Type: Article

Publication Date: 2020-01-01

Citations: 1

DOI: https://doi.org/10.7153/oam-2020-14-65

Abstract

We derive explicit Krein resolvent identities for generally singular Sturm-Liouville operators in terms of boundary condition bases and the Lagrange bracket.As an application of the resolvent identities obtained, we compute the trace of the resolvent difference of a pair of self-adjoint realizations of the Bessel expression -d 2 /dx 2 + (ν 2 -(1/4))x -2 on (0,∞) for values of the parameter ν ∈ [0,1) and use the resulting trace formula to explicitly determine the spectral shift function for the pair.

Locations

  • Operators and Matrices - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Explicit Krein Resolvent Identities for Singular Sturm-Liouville Operators with Applications to Bessel Operators 2019 S. Blake Allan
Justin Hanbin Kim
Gregory Michajlyszyn
Roger Nichols
Don Rung
+ Computing Traces, Determinants, and $$\zeta $$-Functions for Sturm–Liouville Operators: A Survey 2019 Fritz Gesztesy
Klaus Kirsten
+ Effective computation of traces, determinants, and $\zeta$-functions for Sturm--Liouville operators 2017 Fritz Gesztesy
Klaus Kirsten
+ Effective computation of traces, determinants, and $ζ$-functions for Sturm-Liouville operators 2017 Fritz Gesztesy
Klaus Kirsten
+ Spectral zeta-Functions and zeta-Regularized Functional Determinants for Regular Sturm-Liouville Operators 2021 Guglielmo Fucci
Fritz Gesztesy
Klaus Kirsten
Jonathan Stanfill
+ Effective computation of traces, determinants, and ζ-functions for Sturm–Liouville operators 2018 Fritz Gesztesy
Klaus Kirsten
+ Sturm-liouville operators with singular potentials 1999 А. М. Савчук
А. А. Шкаликов
+ Sturm-Liouville operators with singular potentials 2007 А. М. Савчук
+ Trace formulas for Sturm-Liouville differential operators 1961 L. A. Dikiĭ
+ Trace of a difference of singular Sturm-Liouville operators with a potential containing Dirac δ-functions 2013 А. С. Печенцов
+ Spectral zeta-Functions and zeta-Regularized Functional Determinants for Regular Sturm-Liouville Operators 2021 Guglielmo Fucci
Fritz Gesztesy
Klaus Kirsten
Jonathan Stanfill
+ Trace formulas for the Sturm-Liouville operator with regular boundary conditions 2007 A. S. Makin
+ Singular values and trace formulae for resolvent power differences of self-adjoint elliptic operators 2013 Vladimir Lotoreichik
+ Trace Formula for the Sturm-Liouville Operator with Singularity 1998 R. Kh. Amirov
Y. Çakmak
+ Trace of the Sturm-Liouville operator with nonlocal boundary conditions 1980 Leonid V. Bogachev
+ The Askey-Wilson polynomials and q-Sturm-Lioville problems 1994 B. Malcolm Brown
W. D. Evans
Mourad E. H. Ismail
+ The Askey-Wilson polynomials and q-Sturm-Lioville problems 1994 B. M. Brown
W. D. Evans
Mourad E. H. Ismail
+ PDF Chat Sturm-Liouville Operators and Applications 2011 V. А. Marchenko
+ Sturm-Liouville Operators and Applications 1986 V. А. Marchenko
+ Perturbation and spectral theory for singular indefinite Sturm–Liouville operators 2024 Jussi Behrndt
Philipp Schmitz
Gerald Teschl
Carsten Trunk