The Zakharov–Kuznetsov equation in high dimensions: small initial data of critical regularity

Type: Article

Publication Date: 2021-02-04

Citations: 2

DOI: https://doi.org/10.1007/s00028-021-00671-9

Abstract

Abstract The Zakharov–Kuznetsov equation in spatial dimension $$d\ge 5$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> is considered. The Cauchy problem is shown to be globally well-posed for small initial data in critical spaces, and it is proved that solutions scatter to free solutions as $$t \rightarrow \pm \infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>→</mml:mo> <mml:mo>±</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> . The proof is based on i) novel endpoint non-isotropic Strichartz estimates which are derived from the $$(d-1)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>d</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -dimensional Schrödinger equation, ii) transversal bilinear restriction estimates, and iii) an interpolation argument in critical function spaces. Under an additional radiality assumption, a similar result is obtained in dimension $$d=4$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> .

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Evolution Equations - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the propagation of regularity for solutions of the Zakharov–Kuznetsov equation 2023 Argenis J. Mendez
+ On the propagation of regularity for solutions of the Zakharov-Kuznetsov equation 2020 Argenis J. Mendez
+ The Cauchy problem for the $L^2-$critical generalized Zakharov-Kuznetsov equation in dimension 3 2020 Felipe Linares
João P. G. Ramos
+ The Cauchy problem for the $L^2-$critical generalized Zakharov-Kuznetsov equation in dimension 3 2020 Felipe Linares
João P. G. Ramos
+ PDF Chat Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimension three and higher 2022 Sebastian Herr
S. Kinoshita
+ The Zakharov system in dimension $d \geqslant 4$ 2019 Timothy Candy
Sebastian Herr
Kenji Nakanishi
+ PDF Chat Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $ 2021 Zijun Chen
Shengkun Wu
+ On the generalized Zakharov-Kuznetsov equation at critical regularity 2015 Axel Gruenrock
+ PDF Chat On special regularity properties of solutions of the Zakharov-Kuznetsov equation 2018 Felipe Linares
Gustavo Ponce
+ Subcritical well-posedness results for the Zakharov-Kuznetsov equation in dimension three and higher 2020 Sebastian Herr
S. Kinoshita
+ The Zakharov system in dimension $ d \geq 4$ 2022 Timothy Candy
Sebastian Herr
Kenji Nakanishi
+ A note on the 2D generalized Zakharov-Kuznetsov equation: local, global, and scattering results 2011 Luiz Gustavo Farah
Felipe Linares
Ademir Pastor
+ A note on the 2D generalized Zakharov-Kuznetsov equation: local, global, and scattering results 2011 Luiz Gustavo Farah
Felipe Linares
Ademir Pastor
+ PDF Chat The Cauchy problem for the <i>L</i><sup>2</sup>–critical generalized Zakharov-Kuznetsov equation in dimension 3 2021 Felipe Linares
João P. G. Ramos
+ Exponential decay of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm for the 2D Zakharov–Kuznetsov equation on a half-strip 2013 Nikolai A. Larkin
+ Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions 2015 Isao Kato
Kotaro Tsugawa
+ Global well-posedness and scattering for the Zakharov system at the critical space in three spatial dimensions with small and radial initial data 2022 Isao Kato
S. Kinoshita
+ PDF Chat On the 2D Zakharov system with<i>L</i><sup>2</sup>Schrödinger data 2009 Ioan Bejenaru
Sebastian Herr
Justin Holmer
Daniel Tataru
+ PDF Chat The existence of strong solutions to the $3D$ Zakharov-Kuznestov equation in a bounded domain 2014 Chuntian Wang
+ PDF Chat On the minimal Blow-up rate for the 2D modified Zakharov-Kuznetsov model 2025 Jessica Trespalacios