GIF: Generative Interpretable Faces

Type: Article

Publication Date: 2020-11-01

Citations: 51

DOI: https://doi.org/10.1109/3dv50981.2020.00097

Abstract

Photo-realistic visualization and animation of expressive human faces have been a long standing challenge. 3D face modeling methods provide parametric control but generates unrealistic images, on the other hand, generative 2D models like GANs (Generative Adversarial Networks) output photo-realistic face images, but lack explicit control. Recent methods gain partial control, either by attempting to disentangle different factors in an unsupervised manner, or by adding control post hoc to a pre-trained model. Unconditional GANs, however, may entangle factors that are hard to undo later. We condition our generative model on pre-defined control parameters to encourage disentanglement in the generation process. Specifically, we condition StyleGAN2 on FLAME, a generative 3D face model. While conditioning on FLAME parameters yields unsatisfactory results, we find that conditioning on rendered FLAME geometry and photometric details works well. This gives us a generative 2D face model named GIF (Generative Interpretable Faces) that offers FLAME's parametric control. Here, interpretable refers to the semantic meaning of different parameters. Given FLAME parameters for shape, pose, expressions, parameters for appearance, lighting, and an additional style vector, GIF outputs photo-realistic face images. We perform an AMT based perceptual study to quantitatively and qualitatively evaluate how well GIF follows its conditioning. The code, data, and trained model are publicly available for research purposes at http://gif.is.tue.mpg.de.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2021 International Conference on 3D Vision (3DV) - View

Similar Works

Action Title Year Authors
+ GIF: Generative Interpretable Faces 2020 Partha S. Ghosh
Pravir Singh Gupta
Roy Uziel
Anurag Ranjan
Michael J. Black
Timo Bolkart
+ CONFIG: Controllable Neural Face Image Generation 2020 M. Kowalski
Stephan J. Garbin
Virginia Estellers
Tadas Baltrušaitis
Matthew Johnson
Jamie Shotton
+ CONFIG: Controllable Neural Face Image Generation 2020 M. Kowalski
Stephan J. Garbin
Virginia Estellers
Tadas Baltrušaitis
Matthew Johnson
Jamie Shotton
+ Controllable 3D Generative Adversarial Face Model via Disentangling Shape and Appearance 2022 Fariborz Taherkhani
Aashish Rai
Quankai Gao
Shaunak Srivastava
Xuanbai Chen
Fernando De la Torre
Steven Song
Aayush Prakash
Daeil Kim
+ AniFaceGAN: Animatable 3D-Aware Face Image Generation for Video Avatars 2022 Yue Wu
Yu Deng
Jiaolong Yang
Fangyun Wei
Qifeng Chen
Xin Tong
+ FaceLit: Neural 3D Relightable Faces 2023 Anurag Ranjan
Kwang Moo Yi
Jen-Hao Rick Chang
Oncel Tuzel
+ PDF Chat FaceLit: Neural 3D Relightable Faces 2023 Anurag Ranjan
Kwang Moo Yi
Jen-Hao Rick Chang
Oncel Tuzel
+ StyleUV: Diverse and High-fidelity UV Map Generative Model 2020 Myunggi Lee
Wonwoong Cho
Moonheum Kim
David I. Inouye
Nojun Kwak
+ StyleT2F: Generating Human Faces from Textual Description Using StyleGAN2 2022 Mohamed Shawky Sabae
Mohamed Ahmed Dardir
Remonda Talaat Eskarous
Mohamed Ramzy Ebbed
+ PDF Chat Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars 2023 Jingxiang Sun
Xuan Wang
Lizhen Wang
Xiaoyu Li
Yong Zhang
Hongwen Zhang
Yebin Liu
+ Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars 2022 Jingxiang Sun
Xuan Wang
Lizhen Wang
Xiaoyu Li
Yong Zhang
Hongwen Zhang
Yebin Liu
+ PDF Chat GAN-Control: Explicitly Controllable GANs 2021 Alon Shoshan
Nadav Bhonker
Igor Kviatkovsky
Gérard Medioni
+ PDF Chat 3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation 2023 Junshu Tang
Bo Zhang
Binxin Yang
Ting Zhang
Dong Chen
Lizhuang Ma
Fang Wen
+ PDF Chat GAGAN: Geometry-Aware Generative Adversarial Networks 2018 Jean Kossaifi
Linh Tran
Yannis Panagakis
Maja Pantić
+ GAGAN: Geometry-Aware Generative Adversarial Networks 2017 Jean Kossaifi
Linh Tran
Yannis Panagakis
Maja Pantić
+ GAN-Control: Explicitly Controllable GANs 2021 Alon Shoshan
Nadav Bhonker
Igor Kviatkovsky
Gérard Medioni
+ GAN-Control: Explicitly Controllable GANs 2021 Alon Shoshan
Nadav Bhonker
Igor Kviatkovsky
Gérard Medioni
+ 3DFaceShop: Explicitly Controllable 3D-Aware Portrait Generation 2022 Junshu Tang
Bo Zhang
Binxin Yang
Ting Zhang
Dong Chen
Lizhuang Ma
Fang Wen
+ VariTex: Variational Neural Face Textures 2021 Marcel C. Bühler
Abhimitra Meka
Gengyan Li
Thabo Beeler
Otmar Hilliges
+ PDF Chat FreeStyleGAN 2021 Thomas Leimkühler
George Drettakis