Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes

Type: Article

Publication Date: 2020-11-01

Citations: 16

DOI: https://doi.org/10.1109/focs46700.2020.00093

Download PDF

Abstract

The Sum-of-Squares (SoS) hierarchy is a semi-definite programming meta-algorithm that captures state-of-the-art polynomial time guarantees for many optimization problems such as Max- k-CSPs and Tensor PCA. On the flip side, a SoS lower bound provides evidence of hardness, which is particularly relevant to average-case problems for which NP-hardness may not be available. In this paper, we consider the following average case problem, which we call the Planted Affine Planes (PAP) problem: Given m random vectors d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ..., d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , can we prove that there is no vector v ∈ IR <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> such that for all u ∈ [m], 〈v, du〉 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> = 1? In other words, can we prove that m random vectors are not all contained in two parallel hyperplanes at equal distance from the origin? We prove that for m ≤ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3/</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2-ε</sup> , with high probability, degree- n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ω(ε)</sup> SoS fails to refute the existence of such a vector v. When the vectors d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ..., d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> are chosen from the multivariate normal distribution, the PAP problem is equivalent to the problem of proving that a random n-dimensional subspace of R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> does not contain a boolean vector. As shown by Mohanty-Raghavendra-Xu [STOC 2020], a lower bound for this problem implies a lower bound for the problem of certifying energy upper bounds on the Sherrington-Kirkpatrick Hamiltonian, and so our lower bound implies a degree- n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ω(ε)</sup> SoS lower bound for the certification version of the Sherrington-Kirkpatrick problem.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes 2020 Mrinalkanti Ghosh
Fernando Granha Jeronimo
Chris Jones
Aaron Potechin
Goutham Rajendran
+ Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes 2020 Mrinalkanti Ghosh
Fernando Granha Jeronimo
Chris Jones
Aaron Potechin
Goutham Rajendran
+ Sum-of-squares lower bounds for Sparse PCA 2015 Tengyu Ma
Avi Wigderson
+ Machinery for Proving Sum-of-Squares Lower Bounds on Certification Problems 2020 Aaron Potechin
Goutham Rajendran
+ Machinery for Proving Sum-of-Squares Lower Bounds on Certification Problems. 2020 Aaron Potechin
Goutham Rajendran
+ Sum-of-Squares Lower Bounds for Sparse PCA 2015 Tengyu Ma
Avi Wigderson
+ Lifting Sum-of-Squares Lower Bounds: Degree-$2$ to Degree-$4$ 2019 Sidhanth Mohanty
Prasad Raghavendra
Jeff Xu
+ Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere 2016 Vijay Bhattiprolu
Venkatesan Guruswami
Euiwoong Lee
+ Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere 2016 Vijay Bhattiprolu
Venkatesan Guruswami
Euiwoong Lee
+ Computational Hardness of Certifying Bounds on Constrained PCA Problems 2019 Afonso S. Bandeira
Dmitriy Kunisky
Alexander S. Wein
+ Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere. 2016 Vijay Bhattiprolu
Venkatesan Guruswami
Euiwoong Lee
+ PDF Chat The Power of Sum-of-Squares for Detecting Hidden Structures 2017 Samuel B. Hopkins
Pravesh K. Kothari
Aaron Potechin
Prasad Raghavendra
Tselil Schramm
David Steurer
+ The power of sum-of-squares for detecting hidden structures 2017 Samuel B. Hopkins
Pravesh K. Kothari
Aaron Potechin
Prasad Raghavendra
Tselil Schramm
David Steurer
+ The power of sum-of-squares for detecting hidden structures 2017 Samuel B. Hopkins
Pravesh K. Kothari
Aaron Potechin
Prasad Raghavendra
Tselil Schramm
David Steurer
+ PDF Chat Rank-One Boolean Tensor Factorization and the Multilinear Polytope 2024 Alberto Del Pia
Aida Khajavirad
+ Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems 2015 Yash Deshpande
Andrea Montanari
+ Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems 2015 Yash Deshpande
Andrea Montanari
+ A solver for clustered low-rank SDPs arising from multivariate polynomial (matrix) programs 2021 Nando Leijenhorst
+ Rounding Sum-of-Squares Relaxations 2013 Boaz Barak
Jonathan A. Kelner
David Steurer
+ Rounding Sum-of-Squares Relaxations 2013 Boaz Barak
Jonathan A. Kelner
David Steurer