Type: Article
Publication Date: 2020-11-01
Citations: 16
DOI: https://doi.org/10.1109/focs46700.2020.00093
The Sum-of-Squares (SoS) hierarchy is a semi-definite programming meta-algorithm that captures state-of-the-art polynomial time guarantees for many optimization problems such as Max- k-CSPs and Tensor PCA. On the flip side, a SoS lower bound provides evidence of hardness, which is particularly relevant to average-case problems for which NP-hardness may not be available. In this paper, we consider the following average case problem, which we call the Planted Affine Planes (PAP) problem: Given m random vectors d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ..., d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , can we prove that there is no vector v ∈ IR <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> such that for all u ∈ [m], 〈v, du〉 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> = 1? In other words, can we prove that m random vectors are not all contained in two parallel hyperplanes at equal distance from the origin? We prove that for m ≤ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3/</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2-ε</sup> , with high probability, degree- n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ω(ε)</sup> SoS fails to refute the existence of such a vector v. When the vectors d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , ..., d <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> are chosen from the multivariate normal distribution, the PAP problem is equivalent to the problem of proving that a random n-dimensional subspace of R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> does not contain a boolean vector. As shown by Mohanty-Raghavendra-Xu [STOC 2020], a lower bound for this problem implies a lower bound for the problem of certifying energy upper bounds on the Sherrington-Kirkpatrick Hamiltonian, and so our lower bound implies a degree- n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ω(ε)</sup> SoS lower bound for the certification version of the Sherrington-Kirkpatrick problem.