Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao

Type: Preprint

Publication Date: 2022-02-01

Citations: 30

DOI: https://doi.org/10.1109/focs52979.2021.00058

Download PDF

Abstract

We give an algorithm for computing exact maximum flows on graphs with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$m$</tex> edges and integer capacities in the range [ <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$1,U$</tex> ] in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\tilde{O}(m^{\frac{3}{2}-\frac{1}{328}}\log U)$</tex> time. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> We use <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\tilde{O}(\cdot)$</tex> to suppress logarithmic factors in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$m$</tex> . For sparse graphs with polynomially bounded integer capacities, this is the first improvement over the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\tilde{O}(m^{1.5}\log U)$</tex> time bound from [Goldberg-Rao JACM '98]. Our algorithm revolves around dynamically maintaining the augmenting electrical flows at the core of the interior point method based algorithm from [Mądry JACM '16]. This entails designing data structures that, in limited settings, return edges with large electric energy in a graph undergoing resistance updates.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg–Rao 2023 Yu Gao
Yang Liu
Richard Peng
+ Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao 2021 Yu Gao
Yang P. Liu
Richard Peng
+ Unit Capacity Maxflow in Almost Time 2020 Tarun Kathuria
Yang P. Liu
Aaron Sidford
+ Faster Approximation of Max Flow for Directed Graphs 2012 Cheng Wang
+ PDF Chat Faster maxflow via improved dynamic spectral vertex sparsifiers 2022 Jan van den Brand
Yu Gao
Arun Jambulapati
Yin Tat Lee
Yang P. Liu
Richard Peng
Aaron Sidford
+ PDF Chat Faster Sparse Minimum Cost Flow by Electrical Flow Localization 2022 Kyriakos Axiotis
Aleksander Mądry
Adrian Vladu
+ Max-Flows on Sparse and Dense Networks 2013 Rahul Mehta
+ A new approach to computing maximum flows using electrical flows 2013 Yin Tat Lee
Satish Rao
Nikhil Srivastava
+ PDF Chat Faster Maxflow via Improved Dynamic Spectral Vertex Sparsifiers 2021 Jan van den Brand
Yu Gao
Arun Jambulapati
Yin Tat Lee
Yang P. Liu
Richard Peng
Aaron Sidford
+ Faster Maxflow via Improved Dynamic Spectral Vertex Sparsifiers 2021 Jan van den Brand
Yu Gao
Arun Jambulapati
Yin Tat Lee
Yang P. Liu
Richard Peng
Aaron Sidford
+ PDF Chat Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back 2013 Aleksander Mądry
+ PDF Chat An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations 2013 Jonathan A. Kelner
Yin Tat Lee
Lorenzo Orecchia
Aaron Sidford
+ Electrical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs 2010 Paul F. Christiano
Jonathan A. Kelner
Aleksander Mądry
Daniel A. Spielman
Shang‐Hua Teng
+ Approximate Maximum Flow on Separable Undirected Graphs 2013 Gary L. Miller
Richard Peng
+ A Fast Max Flow Algorithm 2019 James B. Orlin
X Gong
+ Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs 2011 Paul F. Christiano
Jonathan A. Kelner
Aleksander Mądry
Daniel A. Spielman
Shang‐Hua Teng
+ PDF Chat Nearly Maximum Flows in Nearly Linear Time 2013 Jonah Sherman
+ Maximum Flow Algorithms 2019 David P. Williamson
+ Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs 2020 Jan van den Brand
Yin-Tat Lee
Danupon Nanongkai
Richard Peng
Thatchaphol Saranurak
Aaron Sidford
Zhao Song
Di Wang
+ PDF Chat A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow 2023 Jan van den Brand
Li Chen
Rasmus Kyng
Yang P. Liu
Richard Peng
Maximilian Probst Gutenberg
Sushant Sachdeva
Aaron Sidford

Works That Cite This (28)

Action Title Year Authors
+ PDF Chat A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow 2023 Jan van den Brand
Li Chen
Rasmus Kyng
Yang P. Liu
Richard Peng
Maximilian Probst Gutenberg
Sushant Sachdeva
Aaron Sidford
+ Almost-Linear-Time Algorithms for Maximum Flow and Minimum-Cost Flow 2023 Li Chen
Rasmus Kyng
Yang P. Liu
Richard Peng
Maximilian Probst Gutenberg
Sushant Sachdeva
+ PDF Chat Near-Linear Time Approximations for Cut Problems via Fair Cuts 2023 Jason Li
Danupon Nanongkai
Debmalya Panigrahi
Thatchaphol Saranurak
+ Augmented Sparsifiers for Generalized Hypergraph Cuts. 2020 Austin R. Benson
Jon Kleinberg
Nate Veldt
+ Augmented Sparsifiers for Generalized Hypergraph Cuts with Applications to Decomposable Submodular Function Minimization 2020 Austin R. Benson
Jon Kleinberg
Nate Veldt
+ Fast Algorithms via Dynamic-Oracle Matroids 2023 Joakim Blikstad
Sagnik Mukhopadhyay
Danupon Nanongkai
Ta-Wei Tu
+ PDF Chat Faster Sparse Minimum Cost Flow by Electrical Flow Localization 2022 Kyriakos Axiotis
Aleksander Mądry
Adrian Vladu
+ PDF Chat Sparsifying, Shrinking and Splicing for Minimum Path Cover in Parameterized Linear Time 2022 Manuel Cáceres
Massimo Cairo
Brendan Mumey
Roméo Rizzi
Alexandru I. Tomescu
+ PDF Chat A tight quasi-polynomial bound for Global Label Min-Cut 2023 Lars Jaffke
Paloma T. Lima
Tomáš Masařík
Marcin Pilipczuk
Uéverton S. Souza
+ PDF Chat Maximum Flow and Minimum-Cost Flow in Almost-Linear Time 2022 Li Chen
Rasmus Kyng
Yang P. Liu
Richard Peng
Maximilian Probst Gutenberg
Sushant Sachdeva