Quadrupole collective states within the Bohr collective Hamiltonian

Type: Article

Publication Date: 2009-10-14

Citations: 80

DOI: https://doi.org/10.1088/0954-3899/36/12/123101

Abstract

The article reviews the general version of the Bohr collective model for the description of quadrupole collective states, including a detailed study the model's kinematics. The general form of the classical and quantum Bohr Hamiltonian is presented together with a discussion of the tensor structure of the collective wave functions and with a short review of various methods of solving the Bohr Hamiltonian eigenvalue equation.The methods of derivation of the classical and quantum Bohr Hamiltonian from the microscopic many-body theory are recalled and the microscopic approach to the Bohr Hamiltonian is applied to interpret collective properties of 12 heavy even-even nuclei in the Hf-Hg region.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Physics G Nuclear and Particle Physics - View

Similar Works

Action Title Year Authors
+ Model for collective motion 2022 Z. P. Li
D. Vretenar
+ PDF Chat The Octupole Collective Hamiltonian. Does It Follow the Example of the Quadrupole Case? 2018 S. G. Rohoziński
L. Próchniak
+ PDF Chat Microscopic derivation of the Bohr–Mottelson collective Hamiltonian and its application to quadrupole shape dynamics 2016 Kenichi Matsuyanagi
Masayuki Matsuo
Takashi Nakatsukasa
Kenichi Yoshida
Nobuo Hinohara
Koichi Sato
+ Theory of nuclear collective vibrations 2022 Haozhao Liang
Елена Литвинова
+ PDF Chat Model for Collective Vibration 2022 Haozhao Liang
Елена Литвинова
+ PDF Chat Open questions on nuclear collective motion 2016 S. Frauendorf
+ PDF Chat Collective quadrupole excitations in the 50 < Z, N < 82 nuclei with the general Bohr Hamiltonian 1999 L. Próchniak
K. Zaja̧c
K. Pomorski
S. G. Rohoziński
J. Srebrny
+ Kinetic energy in the collective quadrupole Hamiltonian from the experimental data 2017 R. V. Jolos
Е. А. Колганова
+ PDF Chat Collective states of even–even nuclei in γ-rigid quadrupole Hamiltonian with minimal length under the sextic potential 2021 A. El Batoul
M. Oulne
I. Tagdamte
+ PDF Chat Exact canonically conjugate momenta to quadrupole-type collective coordinates and derivation of nuclear quadrupole-type collective Hamiltonian 2014 Seiya Nishiyama
João da Providência
+ PDF Chat The low-energy quadrupole mode of nuclei 2015 S. Frauendorf
+ PDF Chat Rotational bands in the quadrupole-octupole collective model 2018 A. Dobrowolski
K. Mazurek
A. Góźdź
+ PDF Chat Dipole oscillation modes in light<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math>-clustering nuclei 2016 W. He
Y. G.
X. G. Cao
X. Z. Cai
G. Q. Zhang
+ PDF Chat Evolution of the phenomenologically determined collective potential along the chain of Zr isotopes 2022 E. V. Mardyban
Е. А. Колганова
T. M. Shneidman
R. V. Jolos
+ Derivation of the Grodzins relation in collective nuclear model 2021 R. V. Jolos
Е. А. Колганова
+ PDF Chat General formalism of collective motion for any deformed system 2015 Jian-You Guo
+ PDF Chat MICROSCOPIC MODELS FOR THE PARTICLE-VIBRATION COUPLING IN EXOTIC NUCLEI 2003 P. F. Bortignon
+ PDF Chat MICROSCOPIC STUDY OF COLLECTIVE STATES OF EVEN-EVEN MOLYBDENUM ISOTOPES 2010 L. Próchniak
+ PDF Chat The quadrupole collective model from a Cartan–Weyl perspective 2008 Stijn De Baerdemacker
K. Heyde
V. Hellemans
+ Simple relations among E2 matrix elements of low-lying collective states 2001 V. Werner
P. von Brentano
R. V. Jolos

Works That Cite This (43)

Action Title Year Authors
+ Structure of Krypton Isotopes using the Generalised Bohr Hamiltonian Method 2020 D. J. MUIR
L. Próchniak
A. Pastore
J. Dobaczewski
+ PDF Chat Rotational bands in the quadrupole-octupole collective model 2018 A. Dobrowolski
K. Mazurek
A. Góźdź
+ PDF Chat Coexistence of nuclear shapes: self-consistent mean-field and beyond 2016 Z. P. Li
Tamara Nikšić
D. Vretenar
+ PDF Chat Nuclear shape coexistence in Po isotopes: An interacting boson model study 2015 J. E. García-Ramos
K. Heyde
+ PDF Chat Microscopic description of spherical to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="bold-italic">γ</mml:mi></mml:mrow></mml:math>-soft shape transitions in Ba and Xe nuclei 2010 Z. P. Li
Tamara Nikšić
D. Vretenar
J. Meng
+ PDF Chat Large-amplitude quadrupole shape mixing probed by the $(p,p^\prime)$ reaction: A model analysis 2019 Koichi Sato
T. Furumoto
Yuma Kikuchi
Kazuyuki Ogata
Y. Sakuragi
+ PDF Chat Coupling of pairing and triaxial shape vibrations in collective states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> -soft nuclei 2021 K. Nomura
D. Vretenar
Z. P. Li
J. Xiang
+ PDF Chat Investigation of shape coexistence in 118–128Te isotopes 2015 H. Sabri
Z. Jahangiri
M. A. Mohammadi
+ PDF Chat Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics 2016 Kenichi Matsuyanagi
Masayuki Matsuo
Takashi Nakatsukasa
Kenichi Yoshida
Nobuo Hinohara
Koichi Sato
+ PDF Chat Effective theory for deformed nuclei 2011 T. Papenbrock

Works Cited by This (19)

Action Title Year Authors
+ PDF Chat Quantizing constrained systems 1997 L. Kaplan
Neepa T. Maitra
Eric J. Heller
+ PDF Chat Soft triaxial rotovibrational motion in the vicinity of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>γ</mml:mi><mml:mo>=</mml:mo><mml:mi>π</mml:mi><mml:mo>∕</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:math> 2004 L. Fortunato
+ PDF Chat Configuration mixing of angular-momentum and particle-number projected triaxial Hartree-Fock-Bogoliubov states using the Skyrme energy density functional 2008 M. Bender
P.-H. Heenen
+ PDF Chat Point symmetries in the Hartree-Fock approach. II. Symmetry-breaking schemes 2000 J. Dobaczewski
J. Dudek
S. G. Rohoziński
T. R. Werner
+ PDF Chat An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces 2005 D.J. Rowe
+ PDF Chat Point symmetries in the Hartree-Fock approach. I. Densities, shapes, and currents 2000 J. Dobaczewski
J. Dudek
S. G. Rohoziński
T. R. Werner
+ PDF Chat Collective quadrupole excitations in the 50 &lt; Z, N &lt; 82 nuclei with the general Bohr Hamiltonian 1999 L. Próchniak
K. Zaja̧c
K. Pomorski
S. G. Rohoziński
J. Srebrny
+ Violation of quadrupole sum rules in the interacting boson model 1987 J. Dobaczewski
S. G. Rohoziński
J. Srebrny
+ PDF Chat Solutions of the Bohr Hamiltonian, a compendium 2005 L. Fortunato
+ PDF Chat Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions 2009 Tamara Nikšić
Z. P. Li
D. Vretenar
L. Próchniak
J. Meng
P. Ring