Distance graphs and sets of positive upper density in ℝd

Type: Article

Publication Date: 2020-04-15

Citations: 15

DOI: https://doi.org/10.2140/apde.2020.13.685

Abstract

We present a sharp extension of a result of Bourgain on finding configurations of k + 1 points in general position in measurable subset of R d of positive upper density whenever d ≥ k + 1 to all proper k-degenerate distance graphs.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Simplices and sets of positive upper density in $\mathbb {R}^d$ 2016 Lauren Huckaba
Neil Lyall
Ákos Magyar
+ Simplices and sets of positive upper density in $\mathbb{R}^d$ 2015 Lauren Huckaba
Neil Lyall
Ákos Magyar
+ Simplices and sets of positive upper density in $\mathbb{R}^d$ 2015 Lauren Huckaba
Neil Lyall
Ákos Magyar
+ Embedding simplices into sets of positive upper density in $\mathbb{R}^d$ 2015 Lauren Huckaba
Neil Lyall
Ákos Magyar
+ Patterns in sets of positive density in trees and affine buildings 2019 Michael Björklund
Alexander Fish
James Parkinson
+ Patterns in sets of positive density in trees and affine buildings 2021 Michael Björklund
Alexander Fish
James Parkinson
+ Product of simplices and sets of positive upper density in $\mathbb{R}^d$ 2016 Neil Lyall
Ákos Magyar
+ Product of simplices and sets of positive upper density in $\mathbb{R}^d$ 2016 Neil Lyall
Ákos Magyar
+ Distances and Trees in Dense Subsets of $\mathbb{Z}^d$ 2015 Neil Lyall
Ákos Magyar
+ Distances and Trees in Dense Subsets of $\mathbb{Z}^d$. 2015 Neil Lyall
Ákos Magyar
+ Distances in Dense Subsets of $\mathbb{Z}^d$ 2015 Neil Lyall
Ákos Magyar
+ PDF Chat The Density of Sets Avoiding Distance 1 in Euclidean Space 2015 Christine Bachoc
Alberto Passuello
Alain Thiéry
+ Unit Distance Problems 2012 Daniel M. Oberlin
Richard Oberlin
+ Unit Distance Problems 2012 Daniel M. Oberlin
Richard Oberlin
+ A strong-type Furstenberg-Sárközy theorem for sets of positive measure 2023 Polona Durcik
Vjekoslav Kovač
Mario Stipčić
+ PDF Chat Existence of similar point configurations in thin subsets of $${\mathbb {R}}^d$$ 2020 Allan Greenleaf
Alex Iosevich
Sevak Mkrtchyan
+ A szemerédi type theorem for sets of positive density inR k 1986 Jean Bourgain
+ Nearly $k$-distance sets 2019 Nóra Frankl
Andrey Kupavskii
+ Nearly $k$-distance sets 2019 Nóra Frankl
Andrey Kupavskii
+ PDF Chat A COUNTEREXAMPLE TO A CONJECTURE OF LARMAN AND ROGERS ON SETS AVOIDING DISTANCE 1 2019 Fernando Mário Oliveira Filho
Frank Vallentin