Holstein-Primakoff/Bogoliubov Transformations and the Multiboson System

Type: Article

Publication Date: 1997-01-01

Citations: 20

DOI: https://doi.org/10.1002/prop.2190450204

Abstract

As an aid to understanding the displacement operator definition of squeezed states for arbitrary systems, we investigate the properties of systems where there is a Holstein-Primakoff or Bogoliubov transformation. In these cases the ladder-operator or minimum-uncertainty definitions of squeezed states are equivalent to an extent displacement-operator definition. We exemplify this in a setting where there are operators satisfying [A, Aå] = 1, but the A's are not necessarily the Fock space a's; the multiboson system. It has been previously observed that the ground state of a system often can be shown to to be a coherent state. We demonstrate why this must be so. We close with a discussion of an alternative, effective definition of displacement-operator squeezed states.

Locations

  • arXiv (Cornell University) - View - PDF
  • Deleted Journal - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Single-mode nonclassicality criteria via Holstein–Primakoff transformation 2020 Mehmet Emre Taşgın
+ PDF Chat Multilevel Holstein-Primakoff approximation and its application to atomic spin squeezing and ensemble quantum memories 2010 Z. Kurucz
Klaus Mølmer
+ Single-mode nonclassicality criteria via Holstein-Primakoff transformation 2015 Mehmet Emre Taşgın
+ Single-mode nonclassicality criteria via Holstein-Primakoff transformation 2015 Mehmet Emre Taşgın
+ PDF Chat Two-Photon Algebra Eigenstates: A Unified Approach to Squeezing 1996 Constantin Brif
+ Gaussian states and operations -- a quick reference 2021 Jonatan Bohr Brask
+ Gaussian states and operations -- a quick reference 2021 Jonatan Bohr Brask
+ Entanglement and U(D)-spin squeezing in symmetric multi-quDit systems and applications to quantum phase transitions in Lipkin-Meshkov-Glick D-level atom models 2021 Manuel Calixto
Alberto Mayorgas
Julio Guerrero
+ PDF Chat Sub-Planck structures: Analogies between the Heisenberg-Weyl and SU(2) groups 2021 Naeem Akhtar
Barry C. Sanders
Carlos Navarrete–Benlloch
+ Fast simulation for optical systems addressing the curse of dimensionality of multi-photons in quantum mechanics 2023 Junpei Oba
Seiji Kajita
Akihito Soeda
+ PDF Chat Quantum tetrachotomous states: Superposition of four coherent states on a line in phase space 2019 Namrata Shukla
Naeem Akhtar
Barry C. Sanders
+ PDF Chat Stellar Representation of Non-Gaussian Quantum States 2020 Ulysse Chabaud
Damian Markham
Frédéric Grosshans
+ Multiparticle quantum interference in Bogoliubov bosonic transformations. 2021 Michael G. Jabbour
Nicolas J. Cerf
+ An investigation on the nonclassical and quantum phase properties of a family of engineered quantum states 2020 Priya Malpani
+ Broadband complex two-mode quadratures for quantum optics. 2021 Leon Bello
Yoad Michael
M. Rosenbluh
Eliahu Cohen
Avi Pe’er
+ PDF Chat Multicomponent cat states with sub-Planck structures and their optomechanical analogues 2024 Tan Hailin
Naeem Akhtar
Gao Xianlong
+ PDF Chat Superposing compass states for asymptotic isotropic sub-Planck phase-space sensitivity 2023 Atharva Shukla
Barry C. Sanders
+ PDF Chat Entanglement and U(D)-spin squeezing in symmetric multi-quDit systems and applications to quantum phase transitions in Lipkin–Meshkov–Glick D-level atom models 2021 Manuel Calixto
Alberto Mayorgas
Julio Guerrero
+ Fermion operators 2008 David Miller
+ Broadband complex two-mode quadratures for quantum optics 2021 Leon Bello
Yoad Michael
M. Rosenbluh
Eliahu Cohen
Avi Pe’er

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat Third-Order Optical Nonlinearity in Two-Dimensional Transition Metal Dichalcogenides 2018 Sina Khorasani
+ Experimental speedup of quantum dynamics through squeezing 2023 S. C. Burd
H. M. Knaack
R. Srinivas
Christian Arenz
Alejandra Collopy
L. J. Stephenson
Althea Wilson
D. J. Wineland
D. Leibfried
J. J. Bollinger
+ PDF Chat Integer quantum Hall effect of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>−</mml:mtext><mml:msub><mml:mi>T</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> model with a broken flat band 2020 Juan Juan Wang
S. Liu
Jing Wang
Jun-Feng Liu
+ PDF Chat Generalized squeezed states 2018 Kevin Zelaya
Sanjib Dey
Véronique Hussin
+ PDF Chat Generalized Susskind–Glogower coherent states 2021 Jean‐Pierre Gazeau
Véronique Hussin
James Moran
Kevin Zelaya
+ PDF Chat Time-dependent Schrödinger equations having isomorphic symmetry algebras. II. Symmetry algebras, coherent and squeezed states 2000 Michael Martin Nieto
D. Rodney Truax
+ PDF Chat A HOLOMORPHIC REPRESENTATION OF THE JACOBI ALGEBRA 2006 Stefan Berceanu
+ PDF Chat Quantum amplification of mechanical oscillator motion 2019 S. C. Burd
R. Srinivas
J. J. Bollinger
A. C. Wilson
D. J. Wineland
D. Leibfried
D. H. Slichter
D. T. C. Allcock
+ Single-particle digitization strategy for quantum computation of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math> scalar field theory 2021 João Barata
Niklas Mueller
Andrey Tarasov
Raju Venugopalan
+ Continuous variable quantum advantages and applications in quantum optics 2020 Ulysse Chabaud