On the structure of general mean-variance hedging strategies

Type: Article

Publication Date: 2007-07-01

Citations: 140

DOI: https://doi.org/10.1214/009117906000000872

Abstract

We provide a new characterization of mean-variance hedging strategies in a general semimartingale market. The key point is the introduction of a new probability measure P⋆ which turns the dynamic asset allocation problem into a myopic one. The minimal martingale measure relative to P⋆ coincides with the variance-optimal martingale measure relative to the original probability measure P.

Locations

  • The Annals of Probability - View - PDF
  • arXiv (Cornell University) - View - PDF
  • City Research Online (City University London) - View - PDF
  • MACAU: Open Access Repository of Kiel University (University Library Kiel) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On the Structure of General Mean-Variance Hedging Strategies 2005 Aleš Černý
Jan Kallsen
+ PDF Chat Martingale representation for Poisson processes with applications to minimal variance hedging 2011 Günter Last
Mathew D. Penrose
+ PDF Chat Semi-Static Hedging Based on a Generalized Reflection Principle on a Multi Dimensional Brownian Motion 2012 Yuri Imamura
Katsuya Takagi
+ PDF Chat On optimal periodic dividend strategies for Lévy risk processes 2018 Kei Noba
José Luis Pérez
Kazutoshi Yamazaki
Kouji Yano
+ PDF Chat Existence and uniqueness of quadratic and linear mean-variance equilibria in general semimartingale markets 2024 Christoph Czichowsky
Martin Herdegen
David Martins
+ PDF Chat Dynamic Mean-Variance Asset Allocation in General Incomplete Markets A Nonlocal BSDE-based Feedback Control Approach 2024 Lei Qian
Chi Seng Pun
Jingxiang Tang
+ PDF Chat Semimartingale Theory of Monotone Mean-Variance Portfolio Allocation 2019 Aleš Černý
+ Robust Mean-Variance Hedging via G-Expectation 2016 Francesca Biagini
Jacopo Mancin
Thilo Meyer Brandis
+ Robust Mean-Variance Hedging via G-Expectation 2016 Francesca Biagini
Jacopo Mancin
Thilo Meyer Brandis
+ Martingale Schrödinger Bridges and Optimal Semistatic Portfolios 2022 Marcel Nutz
Johannes Wiesel
Long Zhao
+ Optimal Portfolio Liquidation and Dynamic Mean-variance Criterion 2015 Jia-Wen Gu
Mogens Steffensen
+ PDF Chat Optimal Portfolio Liquidation and Dynamic Mean-variance Criterion 2015 Jia-Wen Gu
Mogens Steffensen
+ PDF Chat Optimal Portfolio Liquidation and Dynamic Mean-Variance Criterion 2015 Jia-Wen Gu
Mogens Steffensen
+ PDF Chat Semimartingale theory of monotone mean–variance portfolio allocation 2020 Aleš Černý
+ PDF Chat Mean-Variance Hedging Under Partial Information 2008 Michael Mania
Revaz Tevzadze
Teimuraz Toronjadze
+ PDF Chat An Explicit Martingale Version of Brenier's Theorem 2013 Pierre Henry‐Labordère
Nizar Touzi
+ PDF Chat A General Multidimensional Monte Carlo Approach for Dynamic Hedging under Stochastic Volatility 2015 Daniel Bonetti
Dorival Leão
Alberto Ohashi
Vinícius Siqueira
+ Mean-variance Hedging Under Partial Information 2007 Michael Mania
Revaz Tevzadze
T. Toronjadze
+ Mean-variance Hedging Under Partial Information 2007 Michael Mania
Revaz Tevzadze
T. Toronjadze
+ PDF Chat Model-independent hedging strategies for variance swaps 2012 David Hobson
Martin Klimmek